68 research outputs found

    The Resonance and Residue of the First African American Newspaper: How Freedom\u27s Journal Created Space in the Early 19th Century

    Get PDF
    The first African American newspaper, Freedom\u27s Journal, has a historical, rhetorical, and spatial purpose. It not only showed the impact made by African Americans in the fight for their civil rights in the early 19th century, but as an artifact it illustrated and preserved that history allowing it to be studied centuries after the newspaper ceased printing. The purpose of The Resonance and Residue of the First African American Newspaper: How Freedom\u27s Journal Created Space in the Early 19th Century is to provide an interdisciplinary approach to historical newspapers that illustrates an alternative history in this country — a history of and by African Americans. By combining both print and digital research methods, new historical, rhetorical, and spatial information can be discovered that illustrates how the first African American newspaper fought against the influences of white society in the early 19th century and created a space for the black community that became meaningful enough to transform America into a place in which African Americans identified as Americans. Therefore, the purpose of this research is to combine traditional research and close reading with digital analysis (machine reading) by using different digital tools to illustrate how Freedom\u27s Journal used text to combat the influences/powers that were shaping the early 19th century, and create a new and different type of historical narrative about how one oppressed community was successfully able to fight another dominant community through the use of text

    MicroRNAs in cardiac arrhythmia: DNA sequence variation of MiR-1 and MiR-133A in long QT syndrome.

    Get PDF
    Long QT syndrome (LQTS) is a genetic cardiac condition associated with prolonged ventricular repolarization, primarily a result of perturbations in cardiac ion channels, which predisposes individuals to life-threatening arrhythmias. Using DNA screening and sequencing methods, over 700 different LQTS-causing mutations have been identified in 13 genes worldwide. Despite this, the genetic cause of 30-50% of LQTS is presently unknown. MicroRNAs (miRNAs) are small (∼ 22 nucleotides) noncoding RNAs which post-transcriptionally regulate gene expression by binding complementary sequences within messenger RNAs (mRNAs). The human genome encodes over 1800 miRNAs, which target about 60% of human genes. Consequently, miRNAs are likely to regulate many complex processes in the body, indeed aberrant expression of various miRNA species has been implicated in numerous disease states, including cardiovascular diseases. MiR-1 and MiR-133A are the most abundant miRNAs in the heart and have both been reported to regulate cardiac ion channels. We hypothesized that, as a consequence of their role in regulating cardiac ion channels, genetic variation in the genes which encode MiR-1 and MiR-133A might explain some cases of LQTS. Four miRNA genes (miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2), which encode MiR-1 and MiR-133A, were sequenced in 125 LQTS probands. No genetic variants were identified in miR-1-1 or miR-133a-1; but in miR-1-2 we identified a single substitution (n.100A> G) and in miR-133a-2 we identified two substitutions (n.-19G> A and n.98C> T). None of the variants affect the mature miRNA products. Our findings indicate that sequence variants of miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2 are not a cause of LQTS in this cohort

    Defective ALC1 nucleosome remodeling confers PARPi sensitization and synthetic lethality with HRD.

    Get PDF
    Chromatin is a barrier to efficient DNA repair, as it hinders access and processing of certain DNA lesions. ALC1/CHD1L is a nucleosome-remodeling enzyme that responds to DNA damage, but its precise function in DNA repair remains unknown. Here we report that loss of ALC1 confers sensitivity to PARP inhibitors, methyl-methanesulfonate, and uracil misincorporation, which reflects the need to remodel nucleosomes following base excision by DNA glycosylases but prior to handover to APEX1. Using CRISPR screens, we establish that ALC1 loss is synthetic lethal with homologous recombination deficiency (HRD), which we attribute to chromosome instability caused by unrepaired DNA gaps at replication forks. In the absence of ALC1 or APEX1, incomplete processing of BER intermediates results in post-replicative DNA gaps and a critical dependence on HR for repair. Hence, targeting ALC1 alone or as a PARP inhibitor sensitizer could be employed to augment existing therapeutic strategies for HRD cancers.Work in I.A.’s group is funded by the WellcomeTrust (grant number 210634), BBSRC (BB/R007195/1), and Cancer ResearchUK (C35050/A22284). Work in D.A.’s group is funded by the Cancer ResearchUK Career Development Fellowship (grant number 16304). Work in the S.J.B.lab is supported by the Coun, which receives its core fundingfrom Cancer Research UK (FC0010048), the UK Medical Research Council(FC0010048), and the Wellcome Trust (FC0010048); a European Research Council (ERC) Advanced Investigator Grant (TelMetab); and Wellcome TrustSenior Investigator and Collaborative Grants. S.S.-B. was the recipient of an EMBO Long Term Fellowship (ALTF 707-2019) and a MSCA individual fellow-ship (grant 886577). Work in the J.R.C. group is funded by CRUK Career Devel-opment Fellowship (C52690/A19270) with infrastructural support from Well-come core award 090532/Z/09/ZS

    Development of a stratification tool to identify pancreatic intraductal papillary mucinous neoplasms at lowest risk of progression

    Get PDF
    Background: Because most pancreatic intraductal papillary mucinous neoplasms (IPMNs) will never become malignant, currently advocated long-term surveillance is low-yield for most individuals. Aim: To develop a score chart identifying IPMNs at lowest risk of developing worrisome features or high-risk stigmata. Methods: We combined prospectively maintained pancreatic cyst surveillance databases of three academic institutions. Patients were included if they had a presumed side-branch IPMN, without worrisome features or high-risk stigmata at baseline (as defined by the 2012 international Fukuoka guidelines), and were followed ≥ 12 months. The endpoint was development of one or more worrisome features or high-risk stigmata during follow-up. We created a multivariable prediction model using Cox-proportional logistic regression analysis and performed an internal-external validation. Results: 875 patients were included. After a mean follow-up of 50 months (range 12-157), 116 (13%) patients developed worrisome features or high-risk stigmata. The final model included cyst size (HR 1.12, 95% CI 1.09-1.15), cyst multifocality (HR 1.49, 95% CI 1.01-2.18), ever having smoked (HR 1.40, 95% CI 0.95-2.04), history of acute pancreatitis (HR 2.07, 95% CI 1.21-3.55), and history of extrapancreatic malignancy (HR 1.34, 95% CI 0.91-1.97). After validation, the model had good discriminative ability (C-statistic 0.72 in the Mayo cohort, 0.71 in the Columbia cohort, 0.64 in the Erasmus cohort). Conclusion: In presumed side branch IPMNs without worrisome features or high-risk stigmata at baseline, the Dutch-American Risk stratification Tool (DART-1) successfully identifies pancreatic lesions at low risk of developing worrisome features or high-risk stigmata

    The importance of organizational characteristics for improving outcomes in patients with chronic disease: a systematic review of congestive heart failure

    Get PDF
    Luci K. Leykum, Jacqueline Pugh, Valerie Lawrence, and Polly H. Noel are with the South Texas Veterans Health Care System and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio TX, 78229, USA -- Michael Parchman is with the South Texas Veterans Health Care System and Department of Family and Community Medicine, University of Texas Health Science Center at San Antonio, San Antonio TX, 78229, USA -- Reuben R. McDaniel Jr. is with the McComb's School of Business, University of Texas at Austin, Austin TX, USABackground: Despite applications of models of care and organizational or system-level interventions to improve patient outcomes for chronic disease, consistent improvements have not been achieved. This may reflect a mismatch between the interventions and the nature of the settings in which they are attempted. The application of complex adaptive systems (CAS) framework to understand clinical systems and inform efforts to improve them may lead to more successful interventions. We performed a systematic review of interventions to improve outcomes of patients with congestive heart failure (CHF) to examine whether interventions consistent with CAS are more likely to be effective. We then examine differences between interventions that are most effective for improving outcomes for patients with CHF versus previously published data for type 2 diabetes to explore the potential impact of the nature of the disease on the types of interventions that are more likely to be effective. Methods: We conducted a systematic review of the literature between 1998 and 2008 of organizational interventions to improve care of patients with CHF. Two independent reviewers independently assessed studies that met inclusion criteria to determine whether each reported intervention reflected one or more CAS characteristics. The effectiveness of interventions was rated as either 0 (no effect), 0.5 (mixed effect), or 1.0 (effective) based on the type, number, and significance of reported outcomes. Fisher's exact test was used to examine the association between CAS characteristics and intervention effectiveness. Specific CAS characteristics associated with intervention effectiveness for CHF were contrasted with previously published data for type 2 diabetes. Results and discussion: Forty-four studies describing 46 interventions met eligibility criteria. All interventions utilized at least one CAS characteristic, and 85% were either 'mixed effect' or 'effective' in terms of outcomes. The number of CAS characteristics present in each intervention was associated with effectiveness (p < 0.001), supporting the idea that interventions consistent with CAS are more likely to be effective. The individual CAS characteristics associated with CHF intervention effectiveness were learning, self-organization, and co-evolution, a finding different from our previously published analysis of interventions for diabetes. We suggest this difference may be related to the degree of uncertainty involved in caring for patients with diabetes versus CHF. Conclusion: These results suggest that for interventions to be effective, they must be consistent with the CAS nature of clinical systems. The difference in specific CAS characteristics associated with intervention effectiveness for CHF and diabetes suggests that interventions must also take into account attributes of the disease.McCombs School of [email protected]

    Genotype-phenotype relationships of truncating mutations, p.E297G and p.D482G in bile salt export pump deficiency

    Get PDF
    Background & Aims: Bile salt export pump (BSEP) deficiency frequently necessitates liver transplantation in childhood. Homozygous p.D482G or p.E297G mutations are associated with relatively mild phenotypes, responsive to surgical interruption of the enterohepatic circulation (siEHC), in contrast to patients with two predicted protein truncating mutations (PPTM). The phenotype of patients with a compound heterozygous genotype of one p.D482G or p.E297G mutation and one PPTM has remained unclear. We aimed to assess their genotype-phenotype relationship. Methods: From the NAPPED database, we selected patients with homozygous p.D482G or p.E297G mutations (BSEP1/1; n=31), with one p.D482G or p.E297G, and one PPTM (BSEP1/3; n=30), and with two PPTMs (BSEP3/3; n=77). We compared presentation, native liver survival (NLS), and effect of siEHC on NLS. Results: The groups had a similar median age at presentation (0.7-1.3 years). Overall NLS at age 10 years was 21% in BSEP1/3 vs. 75% in BSEP1/1 and 23% in BSEP3/3 (P<0.001). Without siEHC in their follow-up, NLS of BSEP1/3 was similar to BSEP3/3 patients, but considerably lower than BSEP1/1 patients (at age 10 years: 38%, 30%, and 71%, resp; P=0.003). After siEHC, BSEP1/3 and BSEP3/3 patients had similarly low NLS, while this was much higher in BSEP1/1 patients (10 years after siEHC, 27%, 14%, and 92%, resp.; P<0.001). Conclusions: BSEP deficiency patients with one p.E297G or p.D482G mutation and one PPTM have a similarly severe disease course and low responsiveness to siEHC as patients with two PPTMs. This identifies a considerable subgroup of patients who are unlikely to benefit from interruption of the enterohepatic circulation by either surgical or ileal bile acid transporter inhibitor treatment

    Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes

    Get PDF
    In the ongoing debates about eukaryogenesis—the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors—members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2–4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells

    Inverting the model of genomics data sharing with the NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space

    Get PDF
    The NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL; https://anvilproject.org) was developed to address a widespread community need for a unified computing environment for genomics data storage, management, and analysis. In this perspective, we present AnVIL, describe its ecosystem and interoperability with other platforms, and highlight how this platform and associated initiatives contribute to improved genomic data sharing efforts. The AnVIL is a federated cloud platform designed to manage and store genomics and related data, enable population-scale analysis, and facilitate collaboration through the sharing of data, code, and analysis results. By inverting the traditional model of data sharing, the AnVIL eliminates the need for data movement while also adding security measures for active threat detection and monitoring and provides scalable, shared computing resources for any researcher. We describe the core data management and analysis components of the AnVIL, which currently consists of Terra, Gen3, Galaxy, RStudio/Bioconductor, Dockstore, and Jupyter, and describe several flagship genomics datasets available within the AnVIL. We continue to extend and innovate the AnVIL ecosystem by implementing new capabilities, including mechanisms for interoperability and responsible data sharing, while streamlining access management. The AnVIL opens many new opportunities for analysis, collaboration, and data sharing that are needed to drive research and to make discoveries through the joint analysis of hundreds of thousands to millions of genomes along with associated clinical and molecular data types

    Comparative analysis of the transcriptome across distant species

    Get PDF
    The transcriptome is the readout of the genome. Identifying common features in it across distant species can reveal fundamental principles. To this end, the ENCODE and modENCODE consortia have generated large amounts of matched RNA-sequencing data for human, worm and fly. Uniform processing and comprehensive annotation of these data allow comparison across metazoan phyla, extending beyond earlier within-phylum transcriptome comparisons and revealing ancient, conserved features. Specifically, we discover co-expression modules shared across animals, many of which are enriched in developmental genes. Moreover, we use expression patterns to align the stages in worm and fly development and find a novel pairing between worm embryo and fly pupae, in addition to the embryo-to-embryo and larvae-to-larvae pairings. Furthermore, we find that the extent of non-canonical, non-coding transcription is similar in each organism, per base pair. Finally, we find in all three organisms that the gene-expression levels, both coding and non-coding, can be quantitatively predicted from chromatin features at the promoter using a 'universal model' based on a single set of organism-independent parameters
    corecore