31 research outputs found

    Rapid Adjustments Cause Weak Surface Temperature Response to Increased Black Carbon Concentrations

    Get PDF
    We investigate the climate response to increased concentrations of black carbon (BC), as part of the Precipitation Driver Response Model Intercomparison Project (PDRMIP). A tenfold increase in BC is simulated by nine global coupled‐climate models, producing a model median effective radiative forcing of 0.82 (ranging from 0.41 to 2.91) W m⁻², and a warming of 0.67 (0.16 to 1.66) K globally and 1.24 (0.26 to 4.31) K in the Arctic. A strong positive instantaneous radiative forcing (median of 2.10 W m⁻² based on five of the models) is countered by negative rapid adjustments (−0.64 W m⁻² for the same five models), which dampen the total surface temperature signal. Unlike other drivers of climate change, the response of temperature and cloud profiles to the BC forcing is dominated by rapid adjustments. Low‐level cloud amounts increase for all models, while higher‐level clouds are diminished. The rapid temperature response is particularly strong above 400 hPa, where increased atmospheric stabilization and reduced cloud cover contrast the response pattern of the other drivers. In conclusion, we find that this substantial increase in BC concentrations does have considerable impacts on important aspects of the climate system. However, some of these effects tend to offset one another, leaving a relatively small median global warming of 0.47 K per W m⁻²—about 20% lower than the response to a doubling of CO₂. Translating the tenfold increase in BC to the present‐day impact of anthropogenic BC (given the emissions used in this work) would leave a warming of merely 0.07 K

    A PDRMIP multi-model study on the impacts of regional aerosol forcings on global and regional precipitation

    Get PDF
    Atmospheric aerosols such as sulfate and black carbon (BC) generate inhomogeneous radiative forcing and can affect precipitation in distinct ways compared to greenhouse gases (GHGs). Their regional effects on the atmospheric energy budget and circulation can be important for understanding and predicting global and regional precipitation changes, which act on top of the background GHG-induced hydrological changes. Under the framework of the Precipitation Driver Response Model Inter-comparison Project (PDRMIP), multiple models were used for the first time to simulate the influence of regional (Asian and European) sulfate and BC forcing on global and regional precipitation. The results show that, as in the case of global aerosol forcing, the global fast precipitation response to regional aerosol forcing scales with global atmospheric absorption, and the slow precipitation response scales with global surface temperature response. Asian sulphate aerosols appear to be a stronger driver of global temperature and precipitation change compared to European aerosols, but when the responses are normalised by unit radiative forcing or by aerosol burden change, the picture reverses, with European aerosols being more efficient in driving global change. The global apparent hydrological sensitivities of these regional forcing experiments are again consistent with those for corresponding global aerosol forcings found in the literature. However, the regional responses and regional apparent hydrological sensitivities do not align with the corresponding global values. Through a holistic approach involving analysis of the energy budget combined with exploring changes in atmospheric dynamics, we provide a framework for explaining the global and regional precipitation responses to regional aerosol forcing

    A study of the effect of aerosols on surface ozone through meteorology feedbacks over China

    Get PDF
    Interactions between aerosols and gases in the atmosphere have been the focus of an increasing number of studies in recent years. Here, we focus on aerosol effects on tropospheric ozone that involve meteorological feedbacks induced by aerosol–radiation interactions. Specifically, we study the effects that involve aerosol influences on the transport of gaseous pollutants and on atmospheric moisture, both of which can impact ozone chemistry. For this purpose, we use the UK Earth System Model (UKESM1), with which we performed sensitivity simulations including and excluding the aerosol direct radiative effect (ADE) on atmospheric chemistry, and focused our analysis on an area with a high aerosol presence, namely China. By comparing the simulations, we found that ADE reduced shortwave radiation by 11 % in China and consequently led to lower turbulent kinetic energy, weaker horizontal winds and a shallower boundary layer (with a maximum of 102.28 m reduction in north China). On the one hand, the suppressed boundary layer limited the export and diffusion of pollutants and increased the concentration of CO, SO2, NO, NO2, PM2.5 and PM10 in the aerosol-rich regions. The NO/NO2 ratio generally increased and led to more ozone depletion. On the other hand, the boundary layer top acted as a barrier that trapped moisture at lower altitudes and reduced the moisture at higher altitudes (the specific humidity was reduced by 1.69 % at 1493 m on average in China). Due to reduced water vapour, fewer clouds were formed and more sunlight reached the surface, so the photolytical production of ozone increased. Under the combined effect of the two meteorology feedback methods, the annual average ozone concentration in China declined by 2.01 ppb (6.2 %), which was found to bring the model into closer agreement with surface ozone measurements from different parts of China

    Improving together: better science writing through peer learning

    Get PDF
    Science, in our case the climate and geosciences, is increasingly interdisciplinary. Scientists must therefore communicate across disciplinary boundaries. For this communication to be successful, scientists must write clearly and concisely, yet the historically poor standard of scientific writing does not seem to be improving. Scientific writing must improve, and the key to long-term improvement lies with the early-career scientist (ECS). Many interventions exist for an ECS to improve their writing, like style guides and courses. However, momentum is often difficult to maintain after these interventions are completed. Continuity is key to improving writing. This paper introduces the ClimateSnack project, which aims to motivate ECSs to develop and continue to improve their writing and communication skills. The project adopts a peer-learning framework where ECSs voluntarily form writing groups at different institutes around the world. The group members learn, discuss, and improve their writing skills together. Several ClimateSnack writing groups have formed. This paper examines why some of the groups have flourished and others have dissolved. We identify the challenges involved in making a writing group successful and effective, notably the leadership of self-organized groups, and both individual and institutional time management. Within some of the groups, peer learning clearly offers a powerful tool to improve writing as well as bringing other benefits, including improved general communication skills and increased confidence

    Insights from two decades of the Student Conference on Conservation Science

    Get PDF
    Conservation science is a crisis-oriented discipline focused on reducing human impacts on nature. To explore how the field has changed over the past two decades, we analyzed 3245 applications for oral presentations submitted to the Student Conference on Conservation Science (SCCS) in Cambridge, UK. SCCS has been running every year since 2000, aims for global representation by providing bursaries to early-career conservationists from lower-income countries, and has never had a thematic focus, beyond conservation in the broadest sense. We found that the majority of projects submitted to SCCS were based on primary biological data collected from local scale field studies in the tropics, contrary to established literature which highlights gaps in tropical research. Our results showed a small increase over time in submissions framed around how nature benefits people as well as a small increase in submissions integrating social science. Our findings suggest that students and early-career conservationists could provide pathways to increase availability of data from the tropics and address well-known biases in the published literature towards wealthier countries. We hope this research will motivate efforts to support student projects, ensuring data and results are published and data made publicly available.The project was made possible through funding from: JG: EUs Horizon 2020 Marie Skłodowska-Curie program (No 676108) and VILLUM FONDEN (VKR023371), HA-P; National Council for Scientific and Technological Development (CNPq) (203407/2017-2), TA: The Australian Research Council Future Fellowship (FT180100354), The Grantham Foundation for the Protection of the Environment and The Kenneth Miller Trust, APC: the Natural Environment Research Council (NERC DTP [NE/L002507/1]), LC: Cambridge International Scholarship from the Cambridge Trust, FH: the Newton International Fellowship of the Royal Society, DM: the Australian Government, Endeavor Postgraduate Scholarhip, HM: Branco Weiss Fellowship Administered by the ETH Zürich and Drapers' Company Fellowship, Pembroke College BIS: the Natural Environment Research Council (NERC DTP[NE/L002507/1 and NE/S001395/1]) and the Royal Commission for the Exhibition of 1851 Research Fellowship, HW: Cambridge Trust Cambridge-Australia Poynton Scholarship and Cambridge Department of Zoology J. S. Gardiner Scholarship

    Scientific data from precipitation driver response model intercomparison project

    Get PDF
    This data descriptor reports the main scientific values from General Circulation Models (GCMs) in the Precipitation Driver and Response Model Intercomparison Project (PDRMIP). The purpose of the GCM simulations has been to enhance the scientific understanding of how changes in greenhouse gases, aerosols, and incoming solar radiation perturb the Earth's radiation balance and its climate response in terms of changes in temperature and precipitation. Here we provide global and annual mean results for a large set of coupled atmospheric-ocean GCM simulations and a description of how to easily extract files from the dataset. The simulations consist of single idealized perturbations to the climate system and have been shown to achieve important insight in complex climate simulations. We therefore expect this data set to be valuable and highly used to understand simulations from complex GCMs and Earth System Models for various phases of the Coupled Model Intercomparison Project

    Comparison of Effective Radiative Forcing Calculations Using Multiple Methods, Drivers, and Models

    Get PDF
    We compare six methods of estimating effective radiative forcing (ERF) using a set of atmosphere‐ocean general circulation models. This is the first multiforcing agent, multimodel evaluation of ERF values calculated using different methods. We demonstrate that previously reported apparent consistency between the ERF values derived from fixed sea surface temperature simulations and linear regression holds for most climate forcings, excluding black carbon (BC). When land adjustment is accounted for, however, the fixed sea surface temperature ERF values are generally 10–30% larger than ERFs derived using linear regression across all forcing agents, with a much larger (~70–100%) discrepancy for BC. Except for BC, this difference can be largely reduced by either using radiative kernel techniques or by exponential regression. Responses of clouds and their effects on shortwave radiation show the strongest variability in all experiments, limiting the application of regression‐based ERF in small forcing simulations
    corecore