1,500 research outputs found
Effect of Disorder on Ultrafast Exciton Dynamics Probed by Single Molecule Spectroscopy
We present a single-molecule study unraveling the effect of static disorder on the vibrational-assisted ultrafast exciton dynamics in multichromophoric systems. For every single complex, we probe the initial exciton relaxation process by an ultrafast pump-probe approach and the coupling to vibrational modes by emission spectra, while fluorescence lifetime analysis measures the amount of static disorder. Exploiting the wide range of disorder found from complex to complex, we demonstrate that static disorder accelerates the dephasing and energy relaxation rate of the exciton
Effect of chromophore-chromophore electrostatic interactions in the NLO response of functionalized organic-inorganic sol-gel materials
In the last years, important non-linear optical results on sol-gel and
polymeric materials have been reported, with values comparable to those found
in crystals. These new materials contain push-pull chromophores either
incorporated as guest in a high Tg polymeric matrix (doped polymers) or grafted
onto the polymeric matrix. These systems present several advantages; however
they require significant improvement at the molecular level - by designing
optimized chromophores with very large molecular figure of merit, specific to
each application targeted. Besides, it was recently stated in polymers that the
chromophore-chromophore electrostatic interactions, which are dependent of
chromophore concentration, have a strong effect into their non-linear optical
properties. This has not been explored at all in sol-gel systems. In this work,
the sol-gel route was used to prepare hybrid organic-inorganic thin films with
different NLO chromophores grafted into the skeleton matrix. Combining a
molecular engineering strategy for getting a larger molecular figure of merit
and by controlling the intermolecular dipole-dipole interactions through both:
the tuning of the push-pull chromophore concentration and the control of TEOS
(Tetraethoxysilane) concentration, we have obtained a r33 coefficient around 15
pm/V at 633 nm for the classical DR1 azo-chromophore and a r33 around 50 pm/V
at 831 nm for a new optimized chromophore structure.Comment: 10 pages, 11 figures, 1 tabl
Bright ligand-activatable fluorescent protein for high-quality multicolor live-cell super-resolution microscopy
We introduce UnaG as a green-to-dark photoswitching fluorescent protein capable of high-quality super-resolution imaging with photon numbers equivalent to the brightest photoswitchable red protein. UnaG only fluoresces upon binding of a fluorogenic metabolite, bilirubin, enabling UV-free reversible photoswitching with easily controllable kinetics and low background under Epi illumination. The on- and off-switching rates are controlled by the concentration of the ligand and the excitation light intensity, respectively, where the dissolved oxygen also promotes the off-switching. The photo-oxidation reaction mechanism of bilirubin in UnaG suggests that the lack of ligand-protein covalent bond allows the oxidized ligand to detach from the protein, emptying the binding cavity for rebinding to a fresh ligand molecule. We demonstrate super-resolution single-molecule localization imaging of various subcellular structures genetically encoded with UnaG, which enables facile labeling and simultaneous multicolor imaging of live cells. UnaG has the promise of becoming a default protein for high-performance super-resolution imaging. Photoconvertible proteins occupy two color channels thereby limiting multicolour localisation microscopy applications. Here the authors present UnaG, a new green-to-dark photoswitching fluorescent protein for super-resolution imaging, whose activation is based on a noncovalent binding with bilirubin
Signatures of exciton coupling in paired nanoemitters
An exciton formed by the delocalized electronic excitation of paired nanoemitters is interpreted in terms of the electromagnetic emission of the pair and their mutual coupling with a photodetector. A formulation directly tailored for fluorescence detection is identified, giving results which are strongly dependent on geometry and selection rules. Signature symmetric and antisymmetric combinations are analyzed and their distinctive features identified
Clinical observation pseudoobstruction syndrome of the stomach's output part and small intestine of a patient with systematic lupus erythematosis
Stomach's output part and small intestine, combining with damaging of the urinary tract is a rare systemic lupus eritematosus (SLE) manifestation. The patient is 32 years old, suffering from SLE with damaged join, blood system, secondary antiphospholipid syndrome with pulmonary embolism in the history and formation of high postembolic pulmonary hypertension on therapy with hydroxychloroquine and low doses of corticosteroids, was hospitalized because of persistent nausea, vomiting, loss of more than 10 kg body weight 1.5 months. The research have shown the obstruction's formation of the stomach's output part, small bowel obstruction at several levels, as well as thickening of the bladder wall and the unilateral expansion of the ureter. Against the backdrop of strengthening of immunosuppressive therapy these lesions completely regressed
Ab-Initio Calculation of Molecular Aggregation Effects: a Coumarin-343 Case Study
We present time-dependent density functional theory (TDDFT) calculations for
single and dimerized Coumarin-343 molecules in order to investigate the quantum
mechanical effects of chromophore aggregation in extended systems designed to
function as a new generation of sensors and light-harvesting devices. Using the
single-chromophore results, we describe the construction of effective
Hamiltonians to predict the excitonic properties of aggregate systems. We
compare the electronic coupling properties predicted by such effective
Hamiltonians to those obtained from TDDFT calculations of dimers, and to the
coupling predicted by the transition density cube (TDC) method. We determine
the accuracy of the dipole-dipole approximation and TDC with respect to the
separation distance and orientation of the dimers. In particular, we
investigate the effects of including Coulomb coupling terms ignored in the
typical tight-binding effective Hamiltonian. We also examine effects of orbital
relaxation which cannot be captured by either of these models
Search for Narrow Diphoton Resonances and for gamma-gamma+W/Z Signatures in p\bar p Collisions at sqrt(s)=1.8 TeV
We present results of searches for diphoton resonances produced both
inclusively and also in association with a vector boson (W or Z) using 100
pb^{-1} of p\bar p collisions using the CDF detector. We set upper limits on
the product of cross section times branching ratio for both p\bar
p\to\gamma\gamma + X and p\bar p\to\gamma\gamma + W/Z. Comparing the inclusive
production to the expectations from heavy sgoldstinos we derive limits on the
supersymmetry-breaking scale sqrt{F} in the TeV range, depending on the
sgoldstino mass and the choice of other parameters. Also, using a NLO
prediction for the associated production of a Higgs boson with a W or Z boson,
we set an upper limit on the branching ratio for H\to\gamma\gamma. Finally, we
set a lower limit on the mass of a `bosophilic' Higgs boson (e.g. one which
couples only to \gamma, W, and Z$ bosons with standard model couplings) of 82
GeV/c^2 at 95% confidence level.Comment: 30 pages, 11 figure
Measurement of the Strong Coupling Constant from Inclusive Jet Production at the Tevatron Collider
We report a measurement of the strong coupling constant, ,
extracted from inclusive jet production in collisions at
1800 GeV. The QCD prediction for the evolution of with
jet transverse energy is tested over the range 40<<450 GeV using
for the renormalization scale. The data show good agreement with QCD in
the region below 250 GeV. In the text we discuss the data-theory comparison in
the region from 250 to 450 GeV. The value of at the mass of the
boson averaged over the range 40<<250 GeV is found to be
. The associated theoretical uncertainties are mainly due to the choice
of renormalization scale (^{+6%}_{-4%}) and input parton distribution
functions (5%).Comment: 7 pages, 3 figures, using RevTeX. Submitted to Physical Review
Letter
Inclusive Search for Anomalous Production of High-pT Like-Sign Lepton Pairs in Proton-Antiproton Collisions at sqrt{s}=1.8 TeV
We report on a search for anomalous production of events with at least two
charged, isolated, like-sign leptons with pT > 11 GeV/c using a 107 pb^-1
sample of 1.8 TeV ppbar collisions collected by the CDF detector. We define a
signal region containing low background from Standard Model processes. To avoid
bias, we fix the final cuts before examining the event yield in the signal
region using control regions to test the Monte Carlo predictions. We observe no
events in the signal region, consistent with an expectation of
0.63^(+0.84)_(-0.07) events. We present 95% confidence level limits on new
physics processes in both a signature-based context as well as within a
representative minimal supergravity (tanbeta = 3) model.Comment: 15 pages, 4 figures. Minor textual changes, cosmetic improvements to
figures and updated and expanded reference
- …