259 research outputs found

    Open science resources for the discovery and analysis of Tara Oceans data

    Get PDF
    Le " Tara ExpĂ©ditions" organise des expĂ©ditions pour Ă©tudier et comprendre l'impact des changements climatiques sur nos ocĂ©ans.International audienceThe Tara Oceans expedition (2009–2013) sampled contrasting ecosystems of the world oceans, collecting environmental data and plankton, from viruses to metazoans, for later analysis using modern sequencing and state-of-the-art imaging technologies. It surveyed 210 ecosystems in 20 biogeographic provinces, collecting over 35,000 samples of seawater and plankton. The interpretation of such an extensive collection of samples in their ecological context requires means to explore, assess and access raw and validated data sets. To address this challenge, the Tara Oceans Consortium offers open science resources, including the use of open access archives for nucleotides (ENA) and for environmental, biogeochemical, taxonomic and morphological data (PANGAEA), and the development of on line discovery tools and collaborative annotation tools for sequences and images. Here, we present an overview of Tara Oceans Data, and we provide detailed registries (data sets) of all campaigns (from port-to-port), stations and sampling events

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    Students’ Motivation for Learning in Virtual Learning Environments

    Get PDF
    The specific characteristics of online education require of the student engagement and autonomy, factors which are related to motivation for learning. This study investigated students’ motivation in virtual learning environments (VLEs). For this, it used the Teaching and Learning Strategy and Motivation to Learn Scale in Virtual Learning Environments (TLSM-VLE). The scale presented 32 items and six dimensions, three of which aimed to measure the variables of autonomous motivation, controlled motivation, and demotivation. The participants were 572 students from the Brazilian state of Paraná, enrolled on higher education courses on a continuous education course. The results revealed significant rates for autonomous motivational behavior. It is considered that the results obtained may provide contributions for the educators and psychologists who work with VLEs, leading to further studies of the area providing information referent to the issue investigated in this study

    Collective dynamics of active cytoskeletal networks

    Get PDF
    Self organization mechanisms are essential for the cytoskeleton to adapt to the requirements of living cells. They rely on the intricate interplay of cytoskeletal filaments, crosslinking proteins and molecular motors. Here we present an in vitro minimal model system consisting of actin filaments, fascin and myosin-II filaments exhibiting pulsative collective long range dynamics. The reorganizations in the highly dynamic steady state of the active gel are characterized by alternating periods of runs and stalls resulting in a superdiffusive dynamics of the network's constituents. They are dominated by the complex competition of crosslinking molecules and motor filaments in the network: Collective dynamics are only observed if the relative strength of the binding of myosin-II filaments to the actin network allows exerting high enough forces to unbind actin/fascin crosslinks. The feedback between structure formation and dynamics can be resolved by combining these experiments with phenomenological simulations based on simple interaction rules

    Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition

    Get PDF
    A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009–2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world’s planktonic ecosystems

    Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition

    Get PDF
    A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009-2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world's planktonic ecosystems

    Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition

    Get PDF
    A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009-2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world's planktonic ecosystems
    • 

    corecore