2,146 research outputs found

    Order, Please! Uncertainty in the Ordinal-Level Classification of Chlorophyceae

    Get PDF
    Background. Chlorophyceae is one of three most species-rich green algal classes and also the only class in core Chlorophyta whose monophyly remains uncontested as gene and taxon sampling improves. However, some key relationships within Chlorophyceae are less clear-cut and warrant further investigation. The present study combined genome-scale chloroplast data and rich sampling in an attempt to resolve the ordinal classification in Chlorophyceae. The traditional division into Sphaeropleales and Volvocales (SV), and a clade containing Oedogoniales, Chaetopeltidales, and Chaetophorales (OCC) was of particular interest with the addition of deeply branching members of these groups, as well as the placement of several incertae sedis taxa. Methods. We sequenced 18 chloroplast genomes across Chlorophyceae to compile a data set of 58 protein-coding genes of a total of 68 chlorophycean taxa. We analyzed the concatenated nucleotide and amino acid datasets in the Bayesian and Maximum Likelihood frameworks, supplemented by analyses to examine potential discordant signal among genes. We also examined gene presence and absence data across Chlorophyceae. Results. Concatenated analyses yielded at least two well-supported phylogenies: nucleotide data supported the traditional classification with the inclusion of the enigmatic Treubarinia into Sphaeropleales sensu lato. However, amino acid data yielded equally strong support for Sphaeropleaceae as sister to Volvocales, with the rest of the taxa traditionally classified in Sphaeropleales in a separate clade, and Treubarinia as sister to all of the above. Single-gene and other supplementary analyses indicated that the data have low phylogenetic signal at these critical nodes. Major clades were supported by genomic structural features such as gene losses and trans-spliced intron insertions in the plastome. Discussion. While the sequence and gene order data support the deep split between the SV and OCC lineages, multiple phylogenetic hypotheses are possible for Sphaeropleales s.l. Given this uncertainty as well as the higher-taxonomic disorder seen in other algal groups, dwelling on well-defined, strongly supported Linnaean orders is not currently practical in Chlorophyceae and a less formal clade system may be more useful in the foreseeable future. For example, we identify two strongly and unequivocally supported clades: Treubarinia and Scenedesminia, as well as other smaller groups that could serve a practical purpose as named clades. This system does not preclude future establishment of new orders, or emendment of the current ordinal classification if new data support such conclusions

    Order, Please! Uncertainty in the Ordinal-Level Classification of Chlorophyceae

    Get PDF
    Background. Chlorophyceae is one of three most species-rich green algal classes and also the only class in core Chlorophyta whose monophyly remains uncontested as gene and taxon sampling improves. However, some key relationships within Chlorophyceae are less clear-cut and warrant further investigation. The present study combined genome-scale chloroplast data and rich sampling in an attempt to resolve the ordinal classification in Chlorophyceae. The traditional division into Sphaeropleales and Volvocales (SV), and a clade containing Oedogoniales, Chaetopeltidales, and Chaetophorales (OCC) was of particular interest with the addition of deeply branching members of these groups, as well as the placement of several incertae sedis taxa. Methods. We sequenced 18 chloroplast genomes across Chlorophyceae to compile a data set of 58 protein-coding genes of a total of 68 chlorophycean taxa. We analyzed the concatenated nucleotide and amino acid datasets in the Bayesian and Maximum Likelihood frameworks, supplemented by analyses to examine potential discordant signal among genes. We also examined gene presence and absence data across Chlorophyceae. Results. Concatenated analyses yielded at least two well-supported phylogenies: nucleotide data supported the traditional classification with the inclusion of the enigmatic Treubarinia into Sphaeropleales sensu lato. However, amino acid data yielded equally strong support for Sphaeropleaceae as sister to Volvocales, with the rest of the taxa traditionally classified in Sphaeropleales in a separate clade, and Treubarinia as sister to all of the above. Single-gene and other supplementary analyses indicated that the data have low phylogenetic signal at these critical nodes. Major clades were supported by genomic structural features such as gene losses and trans-spliced intron insertions in the plastome. Discussion. While the sequence and gene order data support the deep split between the SV and OCC lineages, multiple phylogenetic hypotheses are possible for Sphaeropleales s.l. Given this uncertainty as well as the higher-taxonomic disorder seen in other algal groups, dwelling on well-defined, strongly supported Linnaean orders is not currently practical in Chlorophyceae and a less formal clade system may be more useful in the foreseeable future. For example, we identify two strongly and unequivocally supported clades: Treubarinia and Scenedesminia, as well as other smaller groups that could serve a practical purpose as named clades. This system does not preclude future establishment of new orders, or emendment of the current ordinal classification if new data support such conclusions

    Breed and gender interact to affect the sale price of beef calves sold through video auctions from 2010 through 2014

    Get PDF
    Citation: McCabe, E. D., King, M. E., Fike, K. E., Hill, K. L., Rogers, G. M., & Odde, K. G. (2016). Breed and gender interact to affect the sale price of beef calves sold through video auctions from 2010 through 2014. Journal of Animal Science, 94, 29-29. doi:10.2527/msasas2016-063The objective of this study was to quantify the effect of the potential interaction of breed and gender on the sale price of beef calves marketed through video auctions while adjusting for all other factors that significantly influenced price. Information on descriptive characteristics of lots of beef calves were obtained from a livestock video auction service. Data were available on 20,007 lots of steer calves and 13,804 lots of heifer calves (2106,181 total steer calves and 1239,645 total heifer calves) that sold in 116 video auctions from 2010 through 2014. All lot characteristics that could be accurately quantified or categorized were used to develop a multiple regression model that evaluated the effects of independent factors on the sale price using a backward selection procedure. A value of P < 0.05 was used to maintain a factor in the final model. Breed description of the calves in the lots was 1 of 19 factors included in the original model and was characterized into 6 groups: English, English crosses (EX), English–Continental crosses (ECX), Black Angus sired out of dams with no Brahman influence (AN), Red Angus sired out of dams with no Brahman influence (AR), and Brahman influenced (BR). Breed and gender of the lot interacted (P < 0.0001) to affect the sale price of calves. Lots of AR and AN steer calves had similar sale prices (P = 0.9540; 379.08and379.08 and 378.14 per 100 kg BW, respectively) and sold for significantly higher prices than all other steer breed groups. English cross and ECX steer lots had similar sale prices (P = 0.2588; 376.24and376.24 and 374.92 per 100 kg BW, respectively) but were greater (P < 0.05) than BR steer calves (365.61per100kgBW).Amongheifercalves,lotsofARheiferssoldforthehighestprice(P <0.05;365.61 per 100 kg BW). Among heifer calves, lots of AR heifers sold for the highest price (P < 0.05; 356.02 per 100 kg BW). The AN heifer calves sold for the second highest price at 345.95per100kgBW,andthispricewasgreater(P <0.05)comparedwithECX(345.95 per 100 kg BW, and this price was greater (P < 0.05) compared with ECX (341.50 per 100 kg BW) and EX heifers (341.14per100kgBW).Brahman−influencedheifercalvessoldforthelowest(P <0.05)priceat341.14 per 100 kg BW). Brahman-influenced heifer calves sold for the lowest (P < 0.05) price at 334.64 per 100 kg BW compared with heifers of all other breed descriptions. Breed and gender composition of the lots of beef calves interacted to affect the sale price of calves selling through video auctions. The value of the specific breed composition of beef calves is influenced by gender and may be related to buyers purchasing certain breeds of heifer calves as replacements for the breeding herd

    Structural Properties, Order-Disorder Phenomena and Phase Stability of Orotic Acid Crystal Forms

    Get PDF
    Orotic acid (OTA) is reported to exist in the anhydrous (AH), monohydrate (Hy1) and dimethylsulfoxide monosolvate (SDMSO) forms. In this study we investigate the (de)hydration/desolvation behavior, aiming at an understanding of the elusive structural features of anhydrous OTA by a combination of experimental and computational techniques, namely, thermal analytical methods, gravimetric moisture (de)sorption studies, water activity measurements, X-ray powder diffraction, spectroscopy (vibrational, solid-state NMR), crystal energy landscape and chemical shift calculations. The Hy1 is a highly stable hydrate, which dissociates above 135°C and loses only a small part of the water when stored over desiccants (25°C) for more than one year. In Hy1, orotic acid and water molecules are linked by strong hydrogen bonds in nearly perfectly planar arranged stacked layers. The layers are spaced by 3.1 Å and not linked via hydrogen-bonds. Upon dehydration the X-ray powder diffraction and solid-state NMR peaks become broader indicating some disorder in the anhydrous form. The Hy1 stacking reflection (122) is maintained, suggesting that the OTA molecules are still arranged in stacked layers in the dehydration product. Desolvation of SDMSO, a non-layer structure, results in the same AH phase as observed upon dehydrating Hy1. Depending on the desolvation conditions different levels of order-disorder of layers present in anhydrous OTA are observed, which is also suggested by the computed low energy crystal structures. These structures provide models for stacking faults as intergrowth of different layers is possible. The variability in anhydrate crystals is of practical concern as it affects the moisture dependent stability of AH with respect to hydration

    Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov.

    Get PDF
    The green plants (Viridiplantae) are an ancient group of eukaryotes comprising two main clades: the Chlorophyta, which includes a wide diversity of green algae, and the Streptophyta, which consists of freshwater green algae and the land plants. The early-diverging lineages of the Viridiplantae comprise unicellular algae, and multicellularity has evolved independently in the two clades. Recent molecular data have revealed an unrecognized early-diverging lineage of green plants, the Palmophyllales, with a unique form of multicellularity, and typically found in deep water. The phylogenetic position of this enigmatic group, however, remained uncertain. Here we elucidate the evolutionary affinity of the Palmophyllales using chloroplast genomic, and nuclear rDNA data. Phylogenetic analyses firmly place the palmophyllalean Verdigellas peltata along with species of Prasinococcales (prasinophyte clade VI) in the deepest-branching clade of the Chlorophyta. The small, compact and intronless chloroplast genome (cpDNA) of V. peltata shows striking similarities in gene content and organization with the cpDNAs of Prasinococcales and the streptophyte Mesostigma viride, indicating that cpDNA architecture has been extremely well conserved in these deep-branching lineages of green plants. The phylogenetic distinctness of the Palmophyllales-Prasinococcales clade, characterized by unique ultrastructural features, warrants recognition of a new class of green plants, Palmophyllophyceae class. nov

    Plastid DNA sequences and oospore characters of some European taxa of Tolypella section Tolypella (Characeae) identify five clusters, including one new cryptic Tolypella taxon from Sardinia, but they do not coincide with current morphological descriptions

    Get PDF
    In Europe, the genus Tolypella (Characeae) comprises four to eight Tolypella taxa in sections Rothia and Tolypella that have been distinguished by vegetative morphology and gametangial characters such as antheridial size and oospore wall ornamentation. However, morphological differentiation is difficult in some cases due to overlapping and variable vegetative features, which in many cases are difficult to observe clearly. To clarify the taxonomic status of the five European taxa of Tolypella in section Tolypella, sequence data of the plastid genes atpB, rbcL and psbC for Tolypella glomerata (Desv.) Leonh., Tolypella hispanica Allen, Tolypella nidifica (O.F. Müll.) A. Braun, Tolypella normaniana (Nordst.) Nordst. and Tolypella salina Cor. were combined with data on oospore morphology, including oospore wall ornamentation. Gene sequence data identified five distinct clusters, but they were not consistent with the morphologically identified five taxa. T. glomerata consisted of some of the samples morphologically identified as T. glomerata and seven samples of T. normaniana, while the remaining T. glomerata samples clustered with specimens of unclear affiliation (Tolypella sp.). We identified two clusters of T. hispanica within the European material: cluster T. hispanica I consisted of samples from various locations, whereas the second cluster (T. hispanica II) consisted of samples of T. hispanica from Sardinia Island. The remaining cluster consisted of all the specimens that had been determined as T. salina or T. nidifica in addition to two specimens of T. normaniana. Oospore morphology was most clearly distinguishable for T. glomerata. Oospore characteristics for all other taxa were not as informative but showed some geographical and/or environmentally influenced differences, especially for T. nidifica and T. salina. Our results suggest the need to further check the different taxonomy of Tolypella sect. Tolypella in which specimens normally identified as T. glomerata might be two different taxa, T. glomerata and an unidentified taxon; T. nidifica and T. salina are not separate taxa; T. normaniana is a diminutive variant of two different Tolypella taxa; and T. hispanica comprises two different taxa, one from the Mediterranean island Sardinia.publishedVersio

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Phylogenetics of Seed Plants: An Analysis of Nucleotide Sequences from the Plastid Gene rbcL

    Get PDF
    We present the results of two exploratory parsimony analyses of DNA sequences from 475 and 499 species of seed plants, respectively, representing all major taxonomic groups. The data are exclusively from the chloroplast gene rbcL, which codes for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO or RuBPCase). We used two different state-transformation assumptions resulting in two sets of cladograms: (i) equal-weighting for the 499-taxon analysis; and (ii) a procedure that differentially weights transversions over transitions within characters and codon positions among characters for the 475-taxon analysis. The degree of congruence between these results and other molecular, as well as morphological, cladistic studies indicates that rbcL sequence variation contains historical evidence appropriate for phylogenetic analysis at this taxonomic level of sampling. Because the topologies presented are necessarily approximate and cannot be evaluated adequately for internal support, these results should be assessed from the perspective of their predictive value and used to direct future studies, both molecular and morphological. In both analyses, the three genera of Gnetales are placed together as the sister group of the flowering plants, and the anomalous aquatic Ceratophyllum (Ceratophyllaceae) is sister to all other flowering plants. Several major lineages identified correspond well with at least some recent taxonomic schemes for angiosperms, particularly those of Dahlgren and Thorne. The basalmost clades within the angiosperms are orders of the apparently polyphyletic subclass Magnoliidae sensu Cronquist. The most conspicuous feature of the topology is that the major division is not monocot versus dicot, but rather one correlated with general pollen type: uniaperturate versus triaperturate. The Dilleniidae and Hamamelidae are the only subclasses that are grossly polyphyletic; an examination of the latter is presented as an example of the use of these broad analyses to focus more restricted studies. A broadly circumscribed Rosidae is paraphyletic to Asteridae and Dilleniidae. Subclass Caryophyllidae is monophyletic and derived from within Rosidae in the 475-taxon analysis but is sister to a group composed of broadly delineated Asteridae and Rosidae in the 499-taxon study

    Harnessing peripheral DNA methylation differences in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to reveal novel biomarkers of disease

    Get PDF
    Background Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease impacting an estimated 44 million adults worldwide. The causal pathology of AD (accumulation of amyloid-beta and tau), precedes hallmark symptoms of dementia by more than a decade, necessitating development of early diagnostic markers of disease onset, particularly for new drugs that aim to modify disease processes. To evaluate differentially methylated positions (DMPs) as novel blood-based biomarkers of AD, we used a subset of 653 individuals with peripheral blood (PB) samples in the Alzheimer’s disease Neuroimaging Initiative (ADNI) consortium. The selected cohort of AD, mild cognitive impairment (MCI), and age-matched healthy controls (CN) all had imaging, genetics, transcriptomics, cerebrospinal protein markers, and comprehensive clinical records, providing a rich resource of concurrent multi-omics and phenotypic information on a well-phenotyped subset of ADNI participants. Results In this manuscript, we report cross-diagnosis differential peripheral DNA methylation in a cohort of AD, MCI, and age-matched CN individuals with longitudinal DNA methylation measurements. Epigenome-wide association studies (EWAS) were performed using a mixed model with repeated measures over time with a P value cutoff of 1 × 10−5 to test contrasts of pairwise differential peripheral methylation in AD vs CN, AD vs MCI, and MCI vs CN. The most highly significant differentially methylated loci also tracked with Mini Mental State Examination (MMSE) scores. Differentially methylated loci were enriched near brain and neurodegeneration-related genes (e.g., BDNF, BIN1, APOC1) validated using the genotype tissue expression project portal (GTex). Conclusions Our work shows that peripheral differential methylation between age-matched subjects with AD relative to healthy controls will provide opportunities to further investigate and validate differential methylation as a surrogate of disease. Given the inaccessibility of brain tissue, the PB-associated methylation marks may help identify the stage of disease and progression phenotype, information that would be central to bringing forward successful drugs for AD
    • …
    corecore