72 research outputs found

    The use of GIS for agrochemical soil characteristics and weed infestation of Grebnevskiy nursery of Shchelkovskiy teaching and experimental forestry

    Get PDF
    The article deals with the features of soil-agrochemical inspection of the nursery area with the use of geoinformation technologies. The purpose of this work was to conduct a soil survey of arable sod-podzolic medium - or light-loamy soils of the territory of the forest nursery, as well as estimation of production area contamination with weeds. The peculiarity of this study was the fact that the process of collection, systematization and processing of all compiled information was focused on the use of modern geographic information systems. Survey points were chosen in coordination with the administration of the nursery and were precised according to the actual space images. Geographical reference of testing points was carried out using global positioning technologies (GPS, GLONASS) based on the NextGIS mobile application (Android OS). Photofixation of nursery fields was performed by means of geotagging technologies, which allow implementation of the obtained graphic information directly into the geographic information system (GIS). The soil samples collected in the field were analyzed in the soil laboratory in order to determine the main indicators of soil fertility. On the basis of the received data the cartograms were developed by means of GIS, which provide information on the main nutrients content in the soil of nursery fields as well as on the most important indicators characterizing the soil absorbing complex (soil acidity, degree of base saturation, etc.). The study of weed infestation allowed developing the thematic map representing the weeds propagation on the nursery fields. All collected information was combined into a comprehensive geographic information system developed on the basis of Quantum GIS shell. As a result, the developed GIS will contribute to operational monitoring of soil fertility and ensure informational support for agricultural machinery applied in the nursery for growing planting material

    Spatial distribution of arable and abandoned land across former Soviet Union countries

    Get PDF
    Knowledge of the spatial distribution of agricultural abandonment following the collapse of the Soviet Union is highly uncertain. To help improve this situation, we have developed a new map of arable and abandoned land for 2010 at a 10 arc-second resolution. We have fused together existing land cover and land use maps at different temporal and spatial scales for the former Soviet Union (fSU) using a training data set collected from visual interpretation of very high resolution (VHR) imagery. We have also collected an independent validation data set to assess the map accuracy. The overall accuracies of the map by region and country, i.e. Caucasus, Belarus, Kazakhstan, Republic of Moldova, Russian Federation and Ukraine, are 90±2%, 84±2%, 92±1%, 78±3%, 95±1%, 83±2%, respectively. This new product can be used for numerous applications including the modelling of biogeochemical cycles, land-use modelling, the assessment of trade-offs between ecosystem services and land-use potentials (e.g., agricultural production), among others

    Data descriptor: Spatial distribution of arable and abandoned land across former Soviet Union countries

    Get PDF
    © The Author(s) 2018. Knowledge of the spatial distribution of agricultural abandonment following the collapse of the Soviet Union is highly uncertain. To help improve this situation, we have developed a new map of arable and abandoned land for 2010 at a 10 arc-second resolution. We have fused together existing land cover and land use maps at different temporal and spatial scales for the former Soviet Union (fSU) using a training data set collected from visual interpretation of very high resolution (VHR) imagery. We have also collected an independent validation data set to assess the map accuracy. The overall accuracies of the map by region and country, i.e. Caucasus, Belarus, Kazakhstan, Republic of Moldova, Russian Federation and Ukraine, are 90±2%, 84±2%, 92±1%, 78±3%, 95±1%, 83±2%, respectively. This new product can be used for numerous applications including the modelling of biogeochemical cycles, land-use modelling, the assessment of trade-offs between ecosystem services and land-use potentials (e.g., agricultural production), among others

    Evenness mediates the global relationship between forest productivity and richness

    Get PDF
    1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    Climatic controls of decomposition drive the global biogeography of forest-tree symbioses

    Get PDF
    The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools1,2, sequester carbon3,4 and withstand the effects of climate change5,6. Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species7, constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species

    The number of tree species on Earth

    Get PDF
    One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global groundsourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are 73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness

    The number of tree species on Earth.

    Get PDF
    One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness

    Native diversity buffers against severity of non-native tree invasions

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2^{1,2}. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4^{3,4}. Here, leveraging global tree databases5,6,7^{5,6,7}, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions
    corecore