579 research outputs found

    A quasiclassical method for calculating the density of states of ultracold collision complexes

    Get PDF
    We derive a quasiclassical expression for the density of states (DOS) of an arbitrary, ultracold, NN-atom collision complex, for a general potential energy surface (PES). We establish the accuracy of our quasiclassical method by comparing to exact quantum results for the K2_2-Rb and NaK-NaK systems, with isotropic model PESs. Next, we calculate the DOS for an accurate NaK-NaK PES to be 0.124~μ\muK−1^{-1}, with an associated Rice-Ramsperger-Kassel-Marcus (RRKM) sticking time of 6.0~μ\mus. We extrapolate the DOS and sticking times to all other polar bialkali-bialkali collision complexes by scaling with atomic masses, equilibrium bond lengths, dissociation energies, and dispersion coefficients. The sticking times calculated here are two to three orders of magnitude shorter than those reported by Mayle et al. [Phys. Rev. A 85, 062712 (2012)]. We estimate dispersion coefficients and collision rates between molecules and complexes. We find that the sticking-amplified three-body loss mechanism is not likely the cause of the losses observed in the experiments

    Photo-induced two-body loss of ultracold molecules

    Get PDF
    The lifetime of nonreactive ultracold bialkali gases was conjectured to be limited by sticky collisions amplifying three-body loss. We show that the sticking times were previously overestimated and do not support this hypothesis. We find that electronic excitation of NaK+NaK collision complexes by the trapping laser leads to the experimentally observed two-body loss. We calculate the excitation rate with a quasiclassical, statistical model employing ab initio potentials and transition dipole moments. Using longer laser wavelengths or repulsive box potentials may suppress the losses

    Kaleidoscope laser

    Get PDF
    We report the first calculations of mode patterns of unstable-cavity lasers with truly two-dimensional transverse geometries. A detailed account of numerical techniques, incorporating a nonorthogonal beam-propagation method, and results for cavities with a range of transverse symmetries, such as regular polygonal and rhomboid, are presented. In view of the beautiful complexity of the eigenmodes predicted, a novel kaleidoscope laser is proposed

    Rest-frame ultra-violet spectra of massive galaxies at z=3: evidence of high-velocity outflows

    Get PDF
    Galaxy formation models invoke the presence of strong feedback mechanisms that regulate the growth of massive galaxies at high redshifts. In this paper we aim to: (1) confirm spectroscopically the redshifts of a sample of massive galaxies selected with photometric redshifts z > 2.5; (2) investigate the properties of their stellar and interstellar media; (3) detect the presence of outflows, and measure their velocities. To achieve this, we analysed deep, high-resolution (R~2000) FORS2 rest-frame UV spectra for 11 targets. We confirmed that 9 out of 11 have spectroscopic redshifts z > 2.5. We also serendipitously found two mask fillers at redshift z > 2.5, which originally were assigned photometric redshifts 2.0 < z < 2.5. In the four highest-quality spectra we derived outflow velocities by fitting the absorption line profiles with models including multiple dynamical components. We found strongly asymmetric, high-ionisation lines, from which we derived outflow velocities ranging from 480 to 1518 km/s. The two galaxies with highest velocity show signs of AGN. We revised the spectral energy distribution fitting U-band through 8 micron photometry, including the analysis of a power-law component subtraction to identify the possible presence of active galactic nuclei (AGN). The revised stellar masses of all but one of our targets are >1e10 Msun, with four having stellar masses > 5e10 Msun. Three galaxies have a significant power-law component in their spectral energy distributions, which indicates that they host AGN. We conclude that massive galaxies are characterised by significantly higher velocity outflows than the typical Lyman break galaxies at z ~ 3. The incidence of high-velocity outflows (~40% within our sample) is also much higher than among massive galaxies at z < 1, which is consistent with the powerful star formation and nuclear activity that most massive galaxies display at z > 2.Comment: 17 pages, 14 figures, Accepted for publication in A&

    Cold Magnetically trapped \u3csup\u3e2\u3c/sup\u3eD\u3csub\u3eg\u3c/sub\u3e scandium atoms. I. Interaction potential

    Get PDF
    We present a first principles description of the interaction of two ground-state scandium atoms. Scandium has a 2Dg ground state. Thirty molecular states correlate to the lowest dissociation limit of the dimer. In the short range, potential energy curves are calculated using second-order n-electron valence state perturbation theory. The first-order long-range interaction is calculated at the complete active space self-consistent field level. We determine the second-order long-range dispersion interaction from atomic dynamic polarizabilities at imaginary frequencies. These polarizabilities are calculated using time-dependent density functional theory. We merge the short-range approach with the long-range model to obtain a physical description of the 30 potential energy curves correlating to the 2Dg + 2Dg limit. Diabatic potentials are presented that can be used in quantum scattering calculations, in order to study Zeeman relaxation of ultracold scandium atoms

    The Christian Life : Dorothy L. Sayers\u27 Balanced View

    Get PDF
    Dorothy L. Sayers formulates a theory in The Mind of the Maker to explain just how man can be said to have been created in the image of God. God, she proposes, is a creative Trinity. The Father carries an idea, complete and whole in His mind; the Son works to reveal that idea; and the Holy Spirit is the power which results from the revelation of the Father\u27s idea. The creation process requires that all three of these parts be present in a balanced unity. In creating man, God placed in him this creative trinity--He gave man the privilege of being, like Him, a maker. Sayers explains how this trinity is revealed in the artist, and how a lack of a balance affects the success of the work. In this paper, I have suggested that Sayers\u27 theory can be applied to the life and responsibility of a Christian. The Father\u27s idea, then, becomes the clear and perfect understanding of dogma; the Son\u27s revelation of that idea becomes the Christian\u27s revelation in his life and work of his understanding of the nature of God; and the Holy Spirit\u27s power becomes the power of the Christian life to advance the world nearer to a just society. Extending Sayers\u27 theory this way can be supported by referring to Sayers\u27 own work. In her detective fiction, characters who are good guys demonstrate a balanced unity of understanding, work, and social responsibility. Bad guys generally show a maladjustment somewhere in one of these three parts. Lord Peter, the detective hero of the novels, most clearly reveals the image of God (even though he is not characterized as a Christian), in part because he is so perfectly balanced, and in part because God Himself does not ever appear, and in his absence Lord Peter becomes the being most worthy of worship in Sayers\u27 fictitious world. In the four religious plays considered in this paper, every-day good-type people are focused upon. Each character exhibits some good quality, but what is good is, nearly destroyed by an atrophy in some other area of the trinity. In one play especially Sayers identifies three things as the supreme desires of all men: to understand what the world is all about; to find worthwhile work to devote themselves to; and to live in a society which is just and decent. The characters in all four of the plays considered find a balance of these things in Christ. In her essays and addresses, Sayers at some points emphasizes the importance of a clear understanding of theology, at other times the necessity of finding a work which is worthwhile and creative, and at still other times the problem of balancing theology and creativity with the need to function as a responsible citizen. However, the whole of her work demonstrates the need for a balanced unity of all three of these things, especially within the life of the Christian. In the final chapter of this paper, Sayers\u27 own life is examined. She herself always sought just this kind of a balance: she worked to reveal in her art the understanding she possessed of God, of Christian theology; and she did so as a responsible citizen, hoping that her work and her understanding would be received with power by the people she loved. She did not always feel herself to have been perfectly successful; however Sayers was aware that, although she was created in His image, she was not herself God. She worked to reveal the image within her, accepting herself as the imperfect medium of a perfect message

    Discovery of a faint, star-forming, multiply lensed, Lyman-alpha blob

    Get PDF
    We report the discovery of a multiply lensed Lyman-α\alpha blob (LAB) behind the galaxy cluster AS1063 using the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT). The background source is at z=z= 3.117 and is intrinsically faint compared to almost all previously reported LABs. We used our highly precise strong lensing model to reconstruct the source properties, and we find an intrinsic luminosity of LLyαL_{\rm Ly\alpha}=1.9×10421.9\times10^{42} erg s−1^{-1}, extending to 33 kpc. We find that the LAB is associated with a group of galaxies, and possibly a protocluster, in agreement with previous studies that find LABs in overdensities. In addition to Lyman-α\alpha (Lyα\alpha) emission, we find \ion{C}{IV}, \ion{He}{II}, and \ion{O}{III}] ultraviolet (UV) emission lines arising from the centre of the nebula. We used the compactness of these lines in combination with the line ratios to conclude that the \Lya nebula is likely powered by embedded star formation. Resonant scattering of the \Lya photons then produces the extended shape of the emission. Thanks to the combined power of MUSE and strong gravitational lensing, we are now able to probe the circumgalatic medium of sub-L∗L_{*} galaxies at z≈3z\approx 3.Comment: 7 pages, 7 figures; moderate changes to match the accepted A&A versoi

    Stabilized Finite Elements in FUN3D

    Get PDF
    A Streamlined Upwind Petrov-Galerkin (SUPG) stabilized finite-element discretization has been implemented as a library into the FUN3D unstructured-grid flow solver. Motivation for the selection of this methodology is given, details of the implementation are provided, and the discretization for the interior scheme is verified for linear and quadratic elements by using the method of manufactured solutions. A methodology is also described for capturing shocks, and simulation results are compared to the finite-volume formulation that is currently the primary method employed for routine engineering applications. The finite-element methodology is demonstrated to be more accurate than the finite-volume technology, particularly on tetrahedral meshes where the solutions obtained using the finite-volume scheme can suffer from adverse effects caused by bias in the grid. Although no effort has been made to date to optimize computational efficiency, the finite-element scheme is competitive with the finite-volume scheme in terms of computer time to reach convergence

    A highly-ionized region surrounding SN Refsdal revealed by MUSE

    Get PDF
    Supernova (SN) Refsdal is the first multiply-imaged, highly-magnified, and spatially-resolved SN ever observed. The SN exploded in a highly-magnified spiral galaxy at z=1.49 behind the Frontier Fields Cluster MACS1149, and provides a unique opportunity to study the environment of SNe at high z. We exploit the time delay between multiple images to determine the properties of the SN and its environment, before, during, and after the SN exploded. We use the integral-field spectrograph MUSE on the VLT to simultaneously target all observed and model-predicted positions of SN Refsdal. We find MgII emission at all positions of SN Refsdal, accompanied by weak FeII* emission at two positions. The measured ratios of [OII] to MgII emission of 10-20 indicate a high degree of ionization with low metallicity. Because the same high degree of ionization is found in all images, and our spatial resolution is too coarse to resolve the region of influence of SN Refsdal, we conclude that this high degree of ionization has been produced by previous SNe or a young and hot stellar population. We find no variability of the [OII] line over a period of 57 days. This suggests that there is no variation in the [OII] luminosity of the SN over this period, or that the SN has a small contribution to the integrated [OII] emission over the scale resolved by our observations.Comment: 5 pages, 4 figures, accepted for publication in A&

    The story of supernova 'Refsdal' told by MUSE

    Get PDF
    We present MUSE observations in the core of the HFF galaxy cluster MACS J1149.5+2223, where the first magnified and spatially-resolved multiple images of SN 'Refsdal' at redshift 1.489 were detected. Thanks to a DDT program with the VLT and the extraordinary efficiency of MUSE, we measure 117 secure redshifts with just 4.8 hours of total integration time on a single target pointing. We spectroscopically confirm 68 galaxy cluster members, with redshift values ranging from 0.5272 to 0.5660, and 18 multiple images belonging to 7 background, lensed sources distributed in redshifts between 1.240 and 3.703. Starting from the combination of our catalog with those obtained from extensive spectroscopic and photometric campaigns using the HST, we select a sample of 300 (164 spectroscopic and 136 photometric) cluster members, within approximately 500 kpc from the BCG, and a set of 88 reliable multiple images associated to 10 different background source galaxies and 18 distinct knots in the spiral galaxy hosting SN 'Refsdal'. We exploit this valuable information to build 6 detailed strong lensing models, the best of which reproduces the observed positions of the multiple images with a rms offset of only 0.26". We use these models to quantify the statistical and systematic errors on the predicted values of magnification and time delay of the next emerging image of SN 'Refsdal'. We find that its peak luminosity should should occur between March and June 2016, and should be approximately 20% fainter than the dimmest (S4) of the previously detected images but above the detection limit of the planned HST/WFC3 follow-up. We present our two-dimensional reconstruction of the cluster mass density distribution and of the SN 'Refsdal' host galaxy surface brightness distribution. We outline the roadmap towards even better strong lensing models with a synergetic MUSE and HST effort.Comment: 21 pages, 9 figures, 6 tables; accepted for publication in the Astrophysical Journal - extra information on data analysis added, all model predictions and results unchange
    • …
    corecore