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Cold magnetically trapped 2Dg scandium atoms. I. Interaction potential

Tijs Karman,1 Xi Chu,2 and Gerrit C. Groenenboom1,*

1Theoretical Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
2Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula,

Montana 59812, USA
(Received 27 July 2014; published 5 November 2014)

We present a first principles description of the interaction of two ground-state scandium atoms. Scandium has
a 2Dg ground state. Thirty molecular states correlate to the lowest dissociation limit of the dimer. In the short
range, potential energy curves are calculated using second-order n-electron valence state perturbation theory.
The first-order long-range interaction is calculated at the complete active space self-consistent field level. We
determine the second-order long-range dispersion interaction from atomic dynamic polarizabilities at imaginary
frequencies. These polarizabilities are calculated using time-dependent density functional theory. We merge the
short-range approach with the long-range model to obtain a physical description of the 30 potential energy curves
correlating to the 2Dg + 2Dg limit. Diabatic potentials are presented that can be used in quantum scattering
calculations, in order to study Zeeman relaxation of ultracold scandium atoms.

DOI: 10.1103/PhysRevA.90.052701 PACS number(s): 34.10.+x, 31.15.A−, 34.50.Cx

I. INTRODUCTION

Bose-Einstein condensates of atoms contained in magnetic
traps are observed for mainly alkali metals [1–3]. These
condensates are of interest, for example, to investigate the time
variance of the fundamental constants [4–7], quantum many-
body physics [8], and quantum computing [9,10]. Through
techniques such as photoassociation [11] and Feshbach asso-
ciation [12], cold atoms are also of interest for the production of
cold molecules. Evaporative cooling is a viable technique for
the production of cold atoms if the rate of thermalizing elastic
collisions is much larger than the rate of collisional reorienta-
tion of angular momentum, as this leads to trap loss [13].

Reorientation of the angular momenta of trapped atoms
is driven by anisotropic interactions. The nonrelativistic
electronic interaction of S-state atoms is isotropic, thus
explaining the feasibility of evaporative cooling of light alkali
atoms [1–3]. Anisotropic relativistic interactions may lead to
large inelastic cross sections for heavier elements, e.g., for
cesium [14]. For light open-shell atoms in states with orbital
angular momentum L > 0, the anisotropy in the nonrelativistic
electronic interaction is dominant. The interaction depends
on the angles between the electronic angular momenta of
both atoms and the internuclear axis, i.e., the potential energy
depends on the electronic state of the dimer. Stated conversely,
the interaction anisotropy lifts the degeneracy of the adiabatic
electronic states of the dimer correlating to the ground-state
atoms [15].

It has been proposed that interaction anisotropy may be
suppressed for so-called submerged-shell atoms [16,17]. The
open subshell of such atoms is shielded by a closed subshell
of larger spatial extent. The partially filled subshell may
contribute nonzero angular momentum, while the filled outer
subshell renders the atom approximately spherically symmet-
ric. Roughly a third of the elements possess such a structure,
thus efficient cooling of such species would greatly increase
the possibilities for forming quantum-degenerate gases.

*gerritg@theochem.ru.nl

The suppression of angular momentum changing collisions
is seen to be efficient for scattering between helium and
titanium [18–20], as well as for helium-erbium and helium-
thulium collisions [21]. However, scattering of pairs of erbium
or thulium atoms leads to unexpectedly large inelastic cross
sections [21].

We consider scandium as a model system for submerged-
shell atoms. The ground state of the scandium atom is a 2Dg

term, corresponding to an [Ar]4s23d1 configuration. The filled
4s orbital has a much larger spatial extent than the orbitals
of the 3d subshell, which qualifies the scandium atom as a
submerged-shell atom. The interaction of two such atoms gives
rise to 30 molecular states:

Sc(2Dg) + Sc(2Dg) → Sc2
(1
�+

g [3], 1�−
u [2], 3�−

g [2], 3�+
u [3],

1�g[2], 1�u[2], 3�g[2], 3�u[2],
1�g[2], 1�u,

3�g,
3�u[2], 1�g,

1�u,
3�g,

3�u,
1�g,

3�u

)
. (1)

An accurate first principles description of such a large number
of states is a challenging task. The large spatial extent of the
filled 4s subshell prevents covalent bonding. The bonding is
therefore expected to be predominantly due to the dispersion
interaction, making an accurate description of electronic
correlation effects essential [22]. Moreover, the submerged-
shell structure is thought to suppress the interaction anisotropy,
leading to energetically closely spaced adiabatic states.

Most theoretical work on the scandium dimer has been
concerned with its X 5�−

u electronic ground state [23,24]. This
state correlates to a higher dissociation channel and is therefore
less relevant for the description of cold atomic gases. Since
the ground state is a quintet spin state, it is not coupled to
the states studied in this work by the nonrelativistic electronic
interaction. To our knowledge, the only study of the electronic
states that correlate to the lowest dissociation channel are the
multireference configuration interaction (MRCI) calculations
by Kalemos et al. [22]. This method is not size-consistent,
which leads to inaccuracy in the long-range regime.
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The applicability of various multireference (MR) ap-
proaches to the electronic structure of transition metal dimers
was assessed for manganese by Buchachenko et al. [25]. These
methods are MR single and double excitation configuration in-
teraction (MRCI), with Davidson correction for higher excita-
tions (MRCI+Q), averaged quadratic coupled cluster (AQCC),
and the second- and third-order perturbation theories: com-
plete active space perturbation theory (CASPTn), n-electron
valence state perturbation theory (NEVPTn), multiconfigura-
tional quasidegenerate perturbation theory (MCQDPTn), and
multireference Møller-Plesset perturbation theory (MRMPn),
n = 2,3. Around the equilibrium geometry, perturbative
methods with Fock-like zeroth-order Hamiltonians, such as
CASPT2, are seen to be much less accurate than MRCI and
related methods. Furthermore, such perturbation theories may
be affected by the intruder-state problem [26]. More generally,
it is concluded that all MR methods differ significantly from
more accurate single-reference coupled-cluster calculations.

Unfortunately we must resort to MR methods for Sc2, since
none of the molecular states correlating to the 2Dg + 2Dg

limit are well described by a single determinant. In this
paper we therefore employ the single-state NEVPT2 method
[27–31]. This method was found to perform remarkably
better than other perturbation theories, for the manganese
dimer [25]. It provides a properly convergent perturbation
expansion, as it is intruder-state free. Furthermore, the theory is
formally size-consistent, although substantial deviations from
size consistency have been observed in numerical studies [23].
In this paper, we report deviations from size consistency on
the order of 10−3Eh. These deviations are not explained by
symmetry breaking in the CASSCF wave function, but arise
from numerical errors in the practical implementation of the
NEVPT2 calculations.

Since the NEVPT2 calculations are insufficiently accurate
to extract anisotropic long-range parameters, we determine the
long-range interaction, in first- and second-order electrostatic
perturbation theory [32]. The strength of the first-order electric
quadrupole-quadrupole coupling is determined at the complete
active space self-consistent field (CASSCF) level of theory.
The second-order dispersion interaction is related to the
dynamic polarizabilities of the atom. These are computed with
time-dependent density functional theory (TD-DFT) [33,34].
Finally, short-range potentials are calculated at the NEVPT2
level of theory. This results in physically acceptable global
PECs for all 30 molecular states correlating to the lowest
dissociation limit. Predicted spectroscopic parameters are in
reasonable agreement with earlier MRCI calculations [22].

In this paper we present diabatic potentials, in addition to
the adiabatic PECs. These diabatic potentials are employed
in quantum scattering calculations in the companion paper
[35]. As pointed out in Ref. [36], describing the collision
of open-shell atoms in an adiabatic basis leads to angular
nonadiabatic couplings that vanish only as 1/R. That is, the
nonadiabatic coupling vanishes much more slowly than the
energy splitting due to the long-ranged quadrupole-quadrupole
interaction, ∝ R−5, and the asymptotic scattering boundary
conditions must be modified in order to account for the
nonadiabatic coupling. To avoid these difficulties, it is essential
that the nonadiabatic couplings are eliminated by employing
a diabatic basis of space-fixed atomic states [36]. We use

the diabatic model proposed in Ref. [15] in order to relate
diabatic potentials to the Born-Oppenheimer potentials, which
are calculated in this paper. This theory has previously
been applied to the collision of P -state atoms [37–39]. The
interaction of P -state atoms can be considered a special case,
since each adiabatic state of the dimer can be assigned definite
asymptotic total electronic orbital angular momentum. For
L � 2 state atoms, this is no longer the case, and in that sense,
the present work can be considered the first application of the
general theory of Ref. [15]. To the best of our knowledge, only
model potentials exist for interacting L � 2 state atoms [40].

This article is organized as follows. In Sec. II we discuss
the space-fixed tensorial expansion of the interaction potential,
the relation of the expansion coefficients to the PECs of the
dimer, and multipole expansion of the interaction [15]. In
Sec. III the supermolecular approach is discussed, where we
emphasize on the long-range potential. Section IV describes
the TD-DFT calculation of the dynamic polarizabilities of
the atom, from which the long-range dispersion interaction
is calculated. Section V discusses how the PECs were fit and
merged with the long-ranged model. Concluding remarks are
given in Sec. VI.

II. THEORY

A. Tensorial expansion of the interaction

To describe the interaction of two open-shell atoms, we
adopt the irreducible spherical tensor formalism and notation
introduced in Refs. [15,32]. The Russel-Saunders coupled
atomic state of atom A is written as |LAMA〉|SA�A〉, where
the angular momentum ket |LAMA〉 describes the electronic
orbital degrees of freedom in the space-fixed frame, and
|SA�A〉 describes the electron spin. Since scandium is a 2Dg

state atom, we have LA = 2 and SA = 1/2. The interaction of
two such atoms may be expanded in unit irreducible spherical
tensor operators, defined by

Tkq(L) ≡
∑
M,M ′

|LM〉〈LM ′|(−1)L−M

(
L k L

−M q M ′

)
[k]1/2.

(2)

Here the symbol in round brackets is a 3-jm symbol, and [k]
is a short-hand notation for 2k + 1. The interaction potential
is given by the space-fixed expansion:

V̂ =
∑
S,�

|S�〉〈S�|V̂ (S),

V̂ (S) =
∑

kA,kB ,kAB

V
(S)
kAkBkAB

(R)

×
∑
qAB

[T̂kA
(LA) ⊗ T̂kB

(LB)](kAB )
qAB

C∗
kABqAB

(R̂). (3)

The symbol Ckq denotes a Racah normalized spherical
harmonic, R̂ denotes the polar angles of the internuclear axis,
and R is the internuclear distance. The symbol

[T̂kA
(LA) ⊗ T̂kB

(LB)](k)
q

=
∑
qA,qB

T̂kAqA
(LA)T̂kBqB

(LB)〈kAqAkBqB |kq〉 (4)

052701-2
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is the spherical component q of the irreducible rank-k tensor
product of T̂kA

(LA) and T̂kB
(LB). The symbol 〈kAqAkBqB |kq〉

denotes a Clebsch-Gordan coefficient. In Eq. (3), the sum
over kA runs from 0 to 2LA, the sum over kB runs from
0 to 2LB , and the sum over k is restricted to even values
for which |kA − kB | � kAB � kA + kB . The term with kA =
kB = kAB = 0 is the isotropic potential, whereas other terms
represent the anisotropic components of the interaction.

Using the diabatic model of Ref. [15], the expansion
coefficients V

(S)
kAkBk(R) are related to the Born-Oppenheimer

potentials of the supermolecule, i.e., the dimer, by

V
(S)
kAkBkAB

(R)

=
∑

c,�,L,L′
Vc�S(R)U�∗

L,cU
�
L′,c(−1)L−�[kA,kB,kAB,L,L′]1/2

×
(

L kAB L′
−� 0 �

) ⎧⎨
⎩

LA LA kA

LB LB kB

L L′ kAB

⎫⎬
⎭ . (5)

The sums over L and L′ run from |LA − LB | to LA + LB ,
the sum over � runs from − min(L,L′) to min(L,L′), and
c enumerates the adiabatic states. The symbol in curly
braces represents a 9-j symbol, Vc�S(R) are the adiabatic
potentials of the dimer, and U�

L,c is an element of the unitary
transformation that diagonalizes the quadrupole-quadrupole
interaction in the space of coupled atomic states in the
body-fixed frame, defined by

|(LALB)L�〉 =
∑

�A,�B

|LA�A〉|LB�B〉〈LA�ALB�B |L�〉.

(6)

See the Appendix for a detailed discussion of the
diagonalization of the quadrupole-quadrupole interaction,
albeit in a different basis. This diabatic representation
eliminates angular nonadiabatic coupling, varying
asymptotically with 1/R [15,36]. This is essential for
the application of the potential in scattering calculations.

B. Long-range theory

In the long range, the interaction can be described using
degenerate perturbation theory and expanded as a power series
in R−1 [32]. In absence of exchange, the interaction becomes
independent of spin, and the expansion coefficients are

V
(S)
kAkBkAB

(R) =
∑

n

cn,(kAkB )kAB

Rn
. (7)

If we consider first- and second-order interactions only, we
have

cn,(kAkB )kAB
= c

(1)
n,(kAkB )kAB

− c
(2)
n,(kAkB )kAB

, (8)

where the minus sign in front of the second-order coeffi-
cient, c

(2)
n,(kAkB )kAB

, is conventional. The first-order coefficients,

c
(1)
n,(kAkB )K12

, are nonzero for even kA � 2LA and kB � 2LB ,
with K12 = kA + kB and n = K12 + 1. They are given by

c
(1)
n,(kAkB )K12

= (−1)kB

(
2K12

2kB

)1/2

Q
(A)
kA

(LA)Q(B)
kB

(LB), (9)

where the symbol in parentheses is a binomial coefficient,
and Q

(A)
kA

(LA) is the reduced matrix element of a multipole

operator of atom A. The Wigner-Eckart theorem relates the
atomic multipole moments to the reduced matrix elements
through

〈LAMA|Q̂(A)
kq |LAM ′

A〉

= (−1)LA−MA [k]1/2

(
LA k LA

−MA q M ′
A

)
Q

(A)
k (LA). (10)

The multipole operators of atom A are defined by

Q̂
(A)
kq =

∑
i

qir
k
i Ckq(r i), (11)

where the sum is over all particles, i, with charge qi , and
position r i , which is measured with respect to the position
of nucleus A, RA. Similar equations hold for atom B. We
will only consider the leading term, which is the quadrupole-
quadrupole interaction (kA = kB = 2).

At second order, we will consider dipole-dipole dispersion
contributions only. The dispersion interaction coefficients are
related to the reduced matrix elements of the dynamic polariz-
abilities of the atoms at imaginary frequencies α

(A)
(lAl′A)kA

(LA; iω)
through

c
(2)
n,(kAkB )k =

∑
lAlB l′Al′B

f
(kAkBk)
lAlB l′Al′B

2π

∫ ∞

0
α

(A)
(lAl′A)kA

(LA; iω)

×α
(B)
(lB l′B )kB

(LB ; iω)dω, (12)

where n = lA + l′A + lB + l′B + 2 and kA + kB and k must
be even. The coefficients f

(kAkBk)
lAlB l′Al′B

are given by Eq. (21) in
Ref. [32]. In Table I we tabulate them for dipole-dipole terms
(lA = l′A = lB = l′B = 1).

For each atomic state |LM〉 with energy EL, we define the
dynamic dipole-dipole polarizability at imaginary frequency

αu(LM; iω) = 2
∑
γMγ

(Eγ − EL)|〈γLγ Mγ |μ̂u|LM〉|2
(Eγ − EL)2 + ω2

. (13)

Here μ̂u are the Cartesian (u = x,y,z) or spherical (u = 0,

+1, −1) space-fixed components of the dipole operator, and
the sum is over all excited states |γLγ Mγ 〉, with energy Eγ .
We also use the notation μ̂‖ = μ̂z = μ̂0. The ± spherical
components of the dipole operator are given by μ̂± =
∓(μ̂x ± iμ̂y)/

√
2. The sum of the ±1 spherical components

of the polarizability is related to the perpendicular component

TABLE I. The coefficients f
(kA,kB ,k)

1,1,1,1 for dipole-dipole dispersion.

kA kB k f
(kA,kB ,k)

1,1,1,1

0 0 0 2
1 1 0 −√

3
2 2 0

√
1/5

1 1 2 −√
6

0 2 2 −√
2

2 0 2 −√
2

2 2 2
√

2/7
2 2 4 18

√
2/35

052701-3
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through

α⊥(LM) = α+1(LM) + α−1(LM)

2
, (14)

where we dropped the ω dependence for compactness. In the
notation of Ref. [32] we have

α‖(LM) = α+
1,0;1,0(LM),

(15)
α⊥(LM) = −α+

1,1;1,−1(LM).

With use of Eqs. (8) and (9) of Ref. [41], the polarizabilities
α‖(LM) and α⊥(LM) can be expressed in terms of the scalar
polarizability, α0(LM), and the rank-2 tensor polarizability,
α2(LM), as

α‖(L,M) = α0(L) + α2(L)
3M2 − L(L + 1)

L(2L − 1)
,

(16)

α⊥(L,M) = α0(L) − 1

2
α2(L)

3M2 − L(L + 1)

L(2L − 1)
.

These equations show that α0(L) and α2(L) may in principle be
determined from α⊥(L,M) and α‖(L,M) of a single magnetic
substate. Alternatively, one may determine the α0(L) and α2(L)
from a linear least squares fit to the polarizabilities of multiple
substates, and use the deviation from Eq. (16) to validate the
internal consistency of the method. By comparing Eq. (16) to
Eq. (41) of Ref. [32], we derive

α(1,1)0(L) = −
√

3(2L + 1)α0(L) (17)

and

α(1,1)2(L) =
[

3(L + 1)(2L + 1)(2L + 3)

10L(2L − 1)

]1/2

α2(L). (18)

The difference of the ±1 spherical components of the
dipole-dipole polarizability can be written in the notation of
Ref. [32] as

α−
1,1;1,−1(L,M) = α−1(L,M) − α+1(L,M)

2
. (19)

Equation (42) of Ref. [32], in the dipole-dipole case, becomes

α−
1,1;1,−1(L,M) =M

[
3

2L(L + 1)(2L + 1)

]1/2

α(1,1)1(L).

(20)

Hence, when M �= 0 we can use this expression to find the
rank-1 reduced dipole-dipole polarizability α(1,1)1(L). These
are known as out-of-phase polarizabilities, and they play
no role for the interaction with rare gas atoms [32]. We
are not aware of previous calculations of the out-of-phase
polarizability of open-shell atoms.

III. SUPERMOLECULAR APPROACH

A. Computational method

All supermolecular calculations have been carried out in
the augmented correlation consistent basis set of quadruple
cardinality, aug-cc-pVQZ [42]. Molecular orbitals have been
generated with the MCSCF program [43–47] of the MOLPRO

package [48,49] by performing state-averaged CASSCF cal-
culations. The active space contains six electrons in symmetry

adapted combinations of the 4s and 3d valence, and the 4p

virtual atomic orbitals. This choice of active space, termed
full valence CAS, was found preferable in earlier work on
transition metal dimers [23,25]. Subsequently, single-state
NEVPT2 calculations were performed.

In the short range, calculations were performed using
an equally spaced radial grid, ranging from 5.9 to 8.5
a0, with a grid spacing of 0.2 a0. In the long range, we
use a logarithmically spaced grid, consisting of the points
9.0357, 9.6052, 10.2106, 10.8541, 11.5382, 12.2654, 13.0384,
13.8602, 14.7337, 15.6623, 16.6494, 17.6988, and 18.8142 a0.

B. Counterpoise procedure

Interaction energies which are obtained by the super-
molecular approach always contain the basis set superposition
error (BSSE) [50]. This error can be reduced by subtracting
the energy of the individual atoms, evaluated in the same
one-electron basis as used in the super-molecular calculation,
rather than subtracting the energy of two well separated atoms.
For closed-shell fragments, this procedure is known as the
counterpoise procedure of Boys and Bernardi [51].

For fragments in degenerate open-shell states, a generalized
counterpoise procedure is more involved. Alexander proposed
to calculate BSSE-corrected interaction energies in a diabatic
representation, for the B(2P ) − H2 system [52]. Kłos et al.
were the first to propose a generalized counterpoise procedure
for the adiabatic states of systems involving an open-shell
fragment [53].

When this procedure is applied to systems consisting of
one L > 0 atom and one rare gas atom, one encounters the
issue that the calculated monomer energy depends on the �

quantum number, in addition to the geometry of the complex
[54]. In this case, a generalized counterpoise procedure can be
constructed by subtracting monomer energies, calculated with
the same value of � as the molecular state.

For systems dissociating to two L > 0 atoms, the situation
is slightly more complicated, as multiple atomic substates
contribute to a single molecular state. We use a generalized
counterpoise procedure [55], which estimates the monomer
energy for a given state as the weighted average of the energies
of atomic substates, evaluated in the dimer basis. The weights
of this average are estimated from the contribution to the
asymptotic wave function. See the Appendix for additional
details on how the asymptotic wave functions are determined.

C. Size consistency

From theoretical considerations, the NEVPT2 method is
known to be size-consistent. In numerical studies, however,
appreciable errors in size consistency are observed. Camacho
et al. [23] report an estimated 1 mEh error in size consistency,
for the electronic ground state of Sc2. Such an error may be
considered small when studying the equilibrium properties of
covalently bound states, but it is quite large compared to the
weak dispersion interaction, studied in this work.

We estimate the deviation from size consistency of the
NEVPT2 calculations for the studied states near R = 20 a0

to be on the order of 1 mEh, consistent with the findings of
Camacho et al. [23]. They attribute this error to symmetry

052701-4
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FIG. 1. (Color online) Scalar product of CASSCF and theoretical
asymptotic wave functions, as a function of the internuclear distance.
Solid lines correspond to singlet states, dashed lines represent triplet
states. Green, red, and blue lines correspond to the �+ states, ordered
by increasing energy. The magenta and cyan lines correspond to the
�− states.

breaking of the underlying CASSCF calculation [23]. How-
ever, for the CASSCF calculations we performed, we estimated
the deviation from size consistency to be close to the energy
convergence criterion that is used. This does not support the
hypothesis that symmetry breaking of the underlying CASSCF

calculation is responsible for the lack of size consistency of
the NEVPT2 calculations.

To obtain a physical description of the long-range inter-
action, the condition that the interaction vanishes at infinite
separation might not be sufficient. As a more stringent test of
the size consistency of the state-averaged CASSCF procedure,
we compared the numerical wave functions to the theoretical
asymptotic form [32]. We conclude that the zeroth-order wave
functions approach the theoretical limit smoothly, which is
illustrated in Fig. 1 for the 10 � states. This figure shows the
scalar product of the CASSCF states and the corresponding
theoretical limits, as a function of the internuclear distance, R.
A detailed description of how this result was obtained is given
in the Appendix.

D. Numerical results

We obtained PECs at the NEVPT2 level for all 30 molecular
states correlating to the Sc(2Dg) + Sc(2Dg) limit. The ab initio
points are shown as the dots in Fig. 2, and the solid lines
show a fit to the potentials, which is discussed in Sec. V. It
appears from Fig. 2 that additional calculations at shorter R

are required, as we have not yet reached the repulsive regime
for all states. However, at shorter separation, the state-averaged
CASSCF procedure does not converge, and we have performed
additional single-state calculations at shorter separation. In
Sec. V we conclude that with this extension we obtain almost
identical fits. Thus, we leave out this extension for simplicity,
such that we do not have to merge the single-state and state-
averaged approaches.
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FIG. 2. (Color online) Adiabatic PECs for all 30 molecular states studied, calculated using the NEVPT2 method. Dots denote ab initio
points, and solid lines denote the anaytical fit discussed in Sec. V. Spectroscopic parameters for all 30 states are given in Table V.
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FIG. 3. (Color online) Space-fixed expansion coefficient
V000(R), vertically shifted ab initio points at the NEVPT2 level
of theory are marked with red circles, and the R6 weighted fit is
represented by the blue line.

The diabatic representation of Ref. [15] diabatizes angular
nonadiabatic coupling. Radial nonadiabatic couplings may
also exist. In particular, an avoided crossing of the second and
third state of 1�+

g symmetry near R = 7.3 a0 we observed.
The first and second state of 3�+

u symmetry show an avoided
crossing near R = 6.8 a0. An upper bound to the off-diagonal
element of the diabatic potential can be found by inspecting
the splitting of the adiabatic states near the crossing. We did
not attempt to locate the crossings exactly but used the radial
grid specified before. We found that the coupling is smaller
than 10−4Eh and 10−7Eh for the singlet and triplet states,
respectively. Since these crossings occur near the minimum
of the potential well, the couplings are small when compared
to the local nuclear kinetic energy. Thus, we were able to ap-
proximately diabatize the crossings by neglecting this coupling
and switching the ab initio points at shorter separation [56].

Next, we obtain the coefficients, VkAkBkAB
(R), of the space-

fixed tensorial expansion using Eq. (5). We are able to obtain
the isotropic parameter c

(2)
6,(00)0 from a R6 weighted linear least

squares fit to V000(R). This yields c
(2)
6,(00)0 = 10145.16 Eha

6
0 . In

obtaining this fit, we allowed for a shift of the potential energy
curves, in order to account for the error in size consistency.
The fit is shown in Fig. 3.

The anisotropic dispersion and quadrupole-quadrupole
parameters could not be resolved from the computed PECs
at the NEVPT2 level of theory. Coefficients VkAkBkAB

(R) con-
taining contributions from first-order quadrupole-quadrupole
coupling and second-order dipole-dipole dispersion are seen
not to vary with R−5 and R−6, respectively. This is illustrated in
Fig. 4. Remaining expansion coefficients should be negligible
compared to the terms shown in Fig. 4; however, they are found
to be comparable.

As shown, the CASSCF method offers a physically ac-
ceptable description of the long-range wave function. The
limited treatment of electron correlation at this level of
theory, however, does not allow for a proper description of
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FIG. 4. (Color online) Vertically shifted space-fixed expansion
coefficients corresponding to anisotropic long-range interactions at
the NEVPT2 level of theory.

the dispersion interaction. Still, the first-order quadrupole-
quadrupole coupling should be well described at this level of
theory. The corresponding coefficient, c

(1)
5,(22)4, is determined

from a R5 weighted linear fit, which is shown in Fig. 5. This
way, we obtained the value c

(1)
5,(22)4 = 25.67 Eha

5
0 , without

having to correct for a size inconsistency, which is absent
for the CASSCF calculations.

Using Eq. (9), the first-order coefficient can be related to
the square of the reduced quadrupole moment. The coefficient
extracted from the CASSCF PECs implies |〈20|�zz|20〉| =
0.94 a.u. This is in reasonable agreement with the quadrupole
moment 〈20|�zz|20〉 = −1.04 a.u. obtained by Kłos as the ex-
pectation value of the quadrupole moment in CASSCF calcu-
lations for the scandium atom, using a different basis set [57].
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FIG. 5. (Color online) Space-fixed expansion coefficient
V224(R), ab initio points at the CASSCF level of theory are marked
with red circles, and the R5 weighted fit is represented by the blue
line.
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Since we are unable to extract anisotropic dispersion
coefficients from the PECs, we determine them from the
dynamic polarizabilities of the atoms. The computation of
these polarizabilities is presented in the following section.

IV. DYNAMIC POLARIZABILITIES

A. Computational method

The dynamic polarizabilities of scandium are determined
using linear response TD-DFT. A detailed description of
the method is given in Refs. [33,34]. The method has
provided polarizabilities to within an uncertainty of about 5%.
Furthermore, the method becomes exact in the limit of high
frequencies. We used the local spin density approximation
with self-interaction correction [33]. This functional gives the
correct −1/r long-range potential, which is important for the
description of electronically excited states and the continuum,
and hence for determining the polarizability.

B. Results

Figure 6 shows the frequency-dependent polarizabilities
α⊥(LM; iω) for the magnetic substates with M = 1 and
M = 2. The solid lines correspond to the values obtained from
Eq. (16), with the scalar (α0) and tensor (α2) polarizabilities
taken from Ref. [41]. The dashed lines represent the values
obtained as the average of the spherical components, Eq. (14).
At ω = 0 the two methods are in good agreement. For ω > 0
we assume that the values obtained from α0 and α2 of Ref. [41]
are more reliable.

The rank-1 polarizability α−
(1,1)1(L; iω) can be computed

from the spherical components of any substate with M �= 0
with Eqs. (19) and (20). Figure 7 shows the rank-1 polarizabil-
ity computed from the M = 1 and M = 2 substates. Clearly,
the agreement between the results derived from the different
substates is not quantitative. However, we may conclude that
the rank-1 polarizability is small, which is probably at least part
of the reason why it is difficult to obtain fully converged results.

From these polarizabilities, dispersion coefficients were
determined using Eq. (12). They are given in Table II. This
table also shows results obtained from the polarizabilities of
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FIG. 6. The perpendicular polarizability at imaginary frequencies.
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FIG. 7. The out-of-phase polarizability at imaginary frequencies,
computed from different magnetic substates.

titanium, determined in a similar calculation. This allows us
to determine dispersion coefficients for the systems Sc − Sc,
Sc − Ti, and Ti − Ti. The anisotropic dispersion coefficients
for these systems are in the same order of magnitude. This
motivates the study of the Sc − Sc system as a model for
submerged-shell atoms and illustrates that our calculations
have at least qualitative meaning for other submerged-shell
systems.

Combining the dispersion coefficients from Table II with
the quadrupole-quadrupole coupling at the CASSCF level,
and short-range effects calculated at the NEVPT2 level yields
physically acceptable global PECs. The analytical representa-
tion of these PECs is discussed in the following section.

V. ANALYTICAL REPRESENTATION

We represent the adiabatic potentials by the functional form

V (R) = VSR + VLR(R),

VSR(R) = Ae−αR + Be−2αR, (21)

TABLE II. Dispersion coefficients c
(2)
6,(kAkB )k in units of Eha

6
0

calculated from the dynamic polarizabilities at imaginary frequency.
Results are shown for the systems Sc − Sc, Sc − Ti, and Ti − Ti.

kA kB k Sc − Sc Sc − Ti Ti − Ti

0 0 0 6108.40 6678.07 7314.79
2 2 0 1.01 0.65 0.39
0 2 2 108.99 117.67 73.08
2 0 2 108.99 67.68 73.08
2 2 2 1.21 0.77 0.46
2 2 4 9.75 6.03 3.71
1 1 0 −1.49a −1.06a −0.84a

−8.00b −10.06b −13.02b

1 1 2 −2.11a −1.54a −1.19a

−11.35b −14.2b −18.41b

aComputed from polarizabilities of the M = 2 substate for Sc and
M = 3 for Ti.
bComputed from polarizabilities of the M = 1 substate for Sc and
M = 2 for Ti.
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with R the internuclear distance, A, B, and α constants and
VLR the damped long-range potential. The long-range potential
is obtained by diagonalizing the interaction matrix, Eq. (3),
where the expansion coefficients, V

(S)
kA,kB ,kAB

(R) are given by
their long-range form, Eq. (7). Prior to diagonalization, the
long-range interaction is damped by multiplying with Tang-
Toennies functions [58] of the form

fn,βn
(R) = 1 − e−βnR

n∑
k=0

(βnR)k

k!
. (22)

The long-range quadrupole-quadrupole contributions are
damped by Tang-Toennies functions with n = 5, whereas we
use n = 6 for the dispersion. The damping parameter for dis-
persion contributions, β6, has been determined by minimizing
the difference between the damped isotropic dispersion and the
isotropic part of the ab initio potential between 7.5 and 13 a0.
The isotropic part of the ab initio potential is obtained by
averaging the potential over all adiabatic states. The damping
parameter for the quadrupole-quadrupole interaction, β5, has
been chosen such that both damping functions fall off in
the same region. This procedure yields β6 = 0.9464 a−1

0 and
β5 = 0.8097 a−1

0 . The Morse parameters α, A, and B are then
used as free parameters in a fit, to reproduce the ab initio data.

As described, the first-order coefficient c
(1)
5,(22)4 was deter-

mined in a linear fit to the CASSCF potentials, whereas the
anisotropic dispersion coefficients were determined from the
dynamic polarizabilities at the TD-DFT level of theory. The
isotropic long-range parameter c

(2)
6,(00)0 could be determined

both from the PECs at the NEVPT2 level of theory, and
from the dynamic polarizabilities. The value obtained from
the PECs is about 1.66 times as large as the one determined
from the polarizabilities. In order to obtain a smooth fit, we
use the isotropic dispersion parameter extracted from the ab
initio curves. Furthermore, we use the dispersion coefficients
determined from out-of-phase polarizabilities for the magnetic
substate with M = 2. The resulting long-range parameters are
summarized in Table III.

The obtained Morse parameters for all adiabatic states are
given in Table IV. The fit adiabats are shown as the solid
curves in Fig. 2. At shorter separation, the state-averaged
CASSCF calculation does not converge. However, we were
able to converge single-state CASSCF calculations at smaller
separation. After merging the two methods, however, the
fitting procedure yields almost identical Morse parameters.

TABLE III. Long-range parameters as used in the fit.

n kA kB k cn,(kAkB )k (units of Eha
n
0 )

5 2 2 4 25.67
6 0 0 0 10145.16
6 1 1 0 − 1.49
6 2 2 0 1.01
6 0 2 2 108.99
6 2 0 2 108.99
6 1 1 2 − 2.11
6 2 2 2 1.21
6 2 2 4 9.75

TABLE IV. Morse parameters as defined in Eq. (21).

α (units of a−1
0 ) A (units of Eh) B (units of Eh)

(1)1�+
g 0.6429 − 0.2191 32.3323

(2)1�+
g 0.6518 − 0.2013 33.5686

(3)1�+
g 0.7808 − 0.8232 301.0327

(1)1�−
u 0.6817 − 0.3696 74.0516

(2)1�−
u 0.7590 − 0.7201 236.4561

(1)3�−
g 0.5692 − 0.1078 6.6462

(2)3�−
g 0.7309 − 0.6618 170.7965

(1)3�+
u 0.7615 − 0.6261 242.0053

(2)3�+
u 0.7144 − 0.3616 109.8344

(3)3�+
u 0.6650 − 0.2298 68.6506

(1)1�g 0.7181 − 0.4401 118.8352
(2)1�g 0.7069 − 0.2795 102.0495
(1)1�u 0.5903 − 0.1712 15.9132
(2)1�u 0.7785 − 0.4653 202.8802
(1)3�g 0.7100 − 0.4053 106.6118
(2)3�g 0.7127 − 0.2463 107.0224
(1)3�u 0.6080 − 0.1220 12.7839
(2)3�u 0.7191 − 0.4327 102.5326
(1)1�g 0.6723 − 0.2004 36.1782
(2)1�g 0.7068 − 0.3728 102.8320
(1)1�u 0.7406 − 0.2931 160.8453
(1)3�g 0.7281 − 0.2843 115.8887
(1)3�u 0.7193 − 0.2841 110.3949
(2)3�u 0.7339 − 0.4246 149.4404
(1)1�g 0.7273 − 0.4478 135.8398
(1)1�u 0.7059 − 0.4499 99.4057
(1)3�g 0.7048 − 0.4305 99.7953
(1)3�u 0.6810 − 0.2993 63.3394
(1)1�g 0.7283 − 0.6539 167.1227
(1)3�u 0.7322 − 0.6547 178.6433

For simplicity, we therefore use the fit to the PECs based
on the state-averaged calculations, thereby avoiding having to
merge the two procedures. The calculations with single-state
CASSCF reference functions are considered a check on the
repulsive part of the potentials.

The short range of the potential is characterized by
spectroscopic constants, of which the equilibrium distance,
Re, well depth, De, and harmonic frequency, ωe, are listed in
Table V. For comparison, this table also includes the results
of Kalemos et al. [22] at the MRCI/cc-pVQZ level of theory.
Experimental data are not yet available for the studied states.
The difference (root mean square error) between the calculated
dissociation energies is 8.8%, harmonic frequencies agree
within 8.4%, and the bond length within 5.2%. Notably, the
bond lengths are consistently shorter at the NEVPT2 level of
theory. This is in agreement with the findings of Buchachenko
et al. [25], who found perturbation approaches generally give
too short bond lengths and overestimate the well depth for
transition metal dimers.

VI. CONCLUSION

We present global PECs for the 30 molecular states
correlating to the lowest dissociation channel of the scandium
dimer. Short-range effects are calculated using NEVPT2 in an
augmented basis set of quadruple cardinality. A deviation from
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TABLE V. Spectroscopic constants for the 30 molecular states that correlate to the lowest dissociation channel, as calculated at the
NEVPT2/aug-cc-pVQZ level of theory in the present work and MRCI/cc-pVQZ of Ref. [22].

NEVPT2 MRCI

De Re ωe De Re ωe

(units of mEh) (units of a0) (cm−1) (units of mEh) (units of a0) (cm−1)

(1)1�+
g 7.30 6.70 77.4 7.04 7.00 69.2

(2)1�+
g 6.93 6.70 76.0 6.55 7.44 69.9

(3)1�+
g 6.30 7.15 81.1 6.18 7.23 100.8

(1)1�−
u 6.49 7.05 75.4 6.79 7.44 79.8

(2)1�−
u 6.24 7.20 79.2 6.34 7.27 76.4

(1)3�−
g 12.07 5.55 94.4 8.61 6.52 93.4

(2)3�−
g 6.27 7.20 77.8 7.38 7.32 94.9

(1)3�+
u 6.15 7.20 78.1 6.84 7.44 82.9

(2)3�+
u 5.77 7.15 72.7 5.35 7.38 74.8

(3)3�+
u 4.52 7.45 61.1 4.57 7.64 59.8

(1)1�g 6.44 7.10 77.2 6.58 7.32 79.7
(2)1�g 5.25 7.25 68.4 5.26 7.47 70.5
(1)1�u 7.71 6.55 75.8 7.01 7.01 61.7
(2)1�u 6.50 6.95 81.0 6.53 7.19 93.6
(1)3�g 6.33 7.10 76.0 6.37 7.34 78.5
(2)3�g 5.09 7.25 67.4 5.16 7.47 70.0
(1)3�u 9.63 6.00 86.7 8.10 6.55 81.3
(2)3�u 6.75 6.95 79.6 6.85 7.21 82.3
(1)1�g 8.18 6.45 84.0 7.76 6.82 76.2
(2)1�g 5.85 7.15 72.8 5.77 7.40 69.9
(1)1�u 5.43 7.25 70.8 6.09 7.45 74.7
(1)3�g 6.08 7.05 74.8 6.20 7.30 76.6
(1)3�u 5.86 7.10 72.9 6.17 7.43 74.0
(2)3�u 5.76 7.20 73.7 5.75 7.43 73.5
(1)1�g 6.43 7.10 77.5 6.60 7.34 81.3
(1)1�u 6.62 7.05 78.0 6.74 7.29 79.1
(1)3�g 6.42 7.05 76.6 6.65 7.32 79.0
(1)3�u 6.75 6.95 76.6 6.73 7.22 77.3
(1)1�g 6.46 7.20 78.8 6.69 7.46 73.2
(1)3�u 6.32 7.25 78.1 6.84 7.43 81.7

size consistency is observed in the numerical calculations.
This deviation is not explained by symmetry breaking in
the underlying CASSCF calculations. In order to obtain a
physical description of the long-range interaction, we combine
the NEVPT2 results at short-range with a long-range model.
The quadrupole-quadrupole coupling strength and the disper-
sion coefficients are determined from complete active space
calculations and atomic polarizabilities at the TD-DFT level,
respectively. This yields a physical description of the 30 molec-
ular states correlating to the 2Dg + 2Dg dissociation limit,
and inferred spectroscopic parameters which are in reasonable
agreement with known MRCI results. In addition to adiabatic
PECs, diabatic potentials are presented, which are employed
in scattering calculations in the companion paper [35].
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APPENDIX: ASYMPTOTIC WAVE FUNCTIONS

The theoretical asymptotic wave functions are the eigen-
vectors of the asymptotic interaction, i.e., the quadrupole-
quadrupole coupling [32]. Apart from a single scaling fac-
tor, this interaction is known analytically, and its angular
dependence is given by the kA = kB = 2, kAB = 4 part of
the tensorial expansion Eq. (3). The scaling does not affect
the eigenvectors, which are found by diagonalizing the matrix
representation of this interaction. We use a body-fixed basis of
Russel-Saunders coupled states, |LA�A〉|LB�B〉. That is, we
take the internuclear axis parallel to the z axis such that we have

Ckq(R̂) = δq0 =
{

1 if q = 0
0 if q �= 0 . (A1)

Then, the matrix elements are given by

〈LA�A|〈LB�B |[T2(LA) ⊗ T2(LB)](4)
0 |LA�′

A〉|LB�′
B〉

= 5(−1)LA−�A+LB−�B

∑
q

〈2q2 −q|40〉

×
(

LA 2 LA

−�A q �′
A

)(
LB 2 LB

−�B −q �′
B

)
. (A2)
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Numerical diagonalization yields the theoretical eigenstates
in the basis {|LAMA〉|LBMB〉}.

We denote the eigenfunctions, which are labeled with the
� = �A + �B quantum number, as |χc,�〉, where c labels the
eigenstates. The contribution of atomic states |LA�A〉|LB�B〉
to this molecular state is given by

w
(c,�)
�A,�B

= |〈χc,�|LA�A〉|LB�B〉|2. (A3)

This weight is used in the counterpoise procedure for the BSSE
correction of the potential energy for state |χc,�〉. The BSSE-
corrected adiabatic potential is calculated as

Vc,�(R) = E
(AB)
c,� (R) −

∑
�A,�B

w
(c,�)
�A,�B

[
E

(A)
�A

(R) + E
(B)
�B

(R)
]
,

(A4)
where E

(A)
�A

and E
(AB)
c,� are the monomer and dimer energies,

evaluated in the dimer basis, with the subscripts denoting the
electronic state.

In order to be able to compare the theoretical asymptotic
wave functions to the CASSCF results, both results should
be expressed in the same basis. In MOLPRO, the state is
expanded in a basis of Slater determinants with different
occupation of the active orbitals. For simplicity, we assume the
atoms are described by a pure [Ar]4s23d1 configuration and
ignore all contributions of other configurations. The basis of
Slater determinants is properly antisymmetrized with respect
to the interchange of any two electrons, in contrast to the
states |LA�A〉|LB�B〉, where each electron is associated with
either atom A or B. This difference may be accounted for by
explicitly antisymmetrizing the long-range-theoretical result.
Furthermore, the angular part of the one-electron functions

is treated differently, as real spherical harmonics are used in
MOLPRO. They are related to the usual spherical harmonics
through

Cl0,c = Cl0, (A5)

and for m > 0

Clm,c = 1√
2

[(−1)mClm + Cl−m],

Clm,s = −i√
2

[(−1)mClm − Cl−m]. (A6)

Finally, these functions are adapted to D2h symmetry as

C±
lm,c/s = 1

2

√
2(1 ± î)C(A)

lm,c/s

= 1

2

√
2
[
C

(A)
lm,c/s ± (−1)lC(B)

lm,c/s

]
, (A7)

where A,B denote the functions are centered at the respective
atom.

These relations are used to express both states in the
same basis. Before comparing the expansion coefficients,
an arbitrary overall phase was fixed by requiring the scalar
product of both states to be real and positive. Furthermore, we
point out that the exclusion of all configurations other than
[Ar]4s23d1 leaves the CASSCF wave function unnormalized.
Therefore, we have normalized the resulting CASSCF state,
according to the norm of the CASSCF wave function of
the separated atoms, where all configurations other than
[Ar]4s23d1 were excluded, as well.
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Phys. J. D 31, 429 (2004).
[55] M. C. G. N. van Vroonhoven and G. C. Groenenboom, J. Chem.

Phys. 116, 1954 (2002).
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