410 research outputs found

    Provenance and Paleogeography of the 25-17 Ma Rainbow Gardens Formation: Evidence for Tectonic Activity at Ca. 19 Ma and Internal Drainage rather than Throughgoing Paleorivers on the Southwestern Colorado Plateau

    Get PDF
    The paleogeographic evolution of the Lake Mead region of southern Nevada and northwest Arizona is crucial to understanding the geologic history of the U.S. Southwest, including the evolution of the Colorado Plateau and formation of the Grand Canyon. The ca. 25–17 Ma Rainbow Gardens Formation in the Lake Mead region, the informally named, roughly coeval Jean Conglomerate, and the ca. 24–19 Ma Buck and Doe Conglomerate southeast of Lake Mead hold the only stratigraphic evidence for the Cenozoic pre-extensional geology and paleogeography of this area. Building on prior work, we present new sedimentologic and stratigraphic data, including sandstone provenance and detrital zircon data, to create a more detailed paleogeographic picture of the Lake Mead, Grand Wash Trough, and Hualapai Plateau region from 25 to 18 Ma. These data confirm that sediment was sourced primarily from Paleozoic strata exposed in surrounding Sevier and Laramide uplifts and active volcanic fields to the north. In addition, a distinctive signal of coarse sediment derived from Proterozoic crystalline basement first appeared in the southwestern corner of the basin ca. 25 Ma at the beginning of Rainbow Gardens Formation deposition and then prograded north and east ca. 19 Ma across the southern half of the basin. Regional thermochronologic data suggest that Cretaceous deposits likely blanketed the Lake Mead region by the end of Sevier thrusting. Post-Laramide northward cliff retreat off the Kingman/Mogollon uplifts left a stepped erosion surface with progressively younger strata preserved northward, on which Rainbow Gardens Formation strata were deposited. Deposition of the Rainbow Gardens Formation in general and the 19 Ma progradational pulse in particular may reflect tectonic uplift events just prior to onset of rapid extension at 17 Ma, as supported by both thermochronology and sedimentary data. Data presented here negate the California and Arizona River hypotheses for an “old” Grand Canyon and also negate models wherein the Rainbow Gardens Formation was the depocenter for a 25–18 Ma Little Colorado paleoriver flowing west through East Kaibab paleocanyons. Instead, provenance and paleocurrent data suggest local to regional sources for deposition of the Rainbow Gardens Formation atop a stripped low-relief western Colorado Plateau surface and preclude any significant input from a regional throughgoing paleoriver entering the basin from the east or northeast

    Using Fill Terraces to Understand Incision Rates and Evolution of the Colorado River in Eastern Grand Canyon, Arizona

    Get PDF
    The incision and aggradation of the Colorado River in eastern Grand Canyon through middle to late Quaternary time can be traced in detail using well-exposed fill terraces dated by a combination of optically stimulated luminescence, uranium series, and cosmogenic nuclide dating. This fluvial history provides the best bedrock incision rate for this important landscape and highlights the complications and advantages of fill terrace records for understanding river long-profile evolution and incision. The use of fill terraces, as distinct from strath terraces, for calculating incision rates is complicated by the cyclic alluviation and incision they record. In the example of the Grand Canyon this has led to various rates being reported by different workers and rates that tend to be overestimates in shorter records. We illustrate that a meaningful long-term bedrock incision rate of 140 m/m.y. can be extracted from the Grand Canyon record by linking episodes when the Colorado River is floored on bedrock. Variable incision rates reported in the greater region may be, to some degree, due to inconsistent calculations. Our data also highlight that the Colorado River has been a mixed alluvial-bedrock river through both time and space and has been a bedrock river for less than half of its Pleistocene history. This strong temporal variation, combined with the varying bedrock the river encounters on its path, heightens the challenge of understanding the tectonic, climatic, and drainage integration controls on the form and evolution of the Colorado River’s long profile

    Magmatic Landscape Construction

    Get PDF
    Magmatism is an important driver of landscape adjustment over ∌10% of Earth's land surface, producing 103‐ to 106‐km2 terrains that often persistently resurface with magma for 1–10 s of Myr. Construction of topography by magmatic intrusions and eruptions approaches or exceeds tectonic uplift rates in these settings, defining regimes of landscape evolution by the degree to which such magmatic construction outpaces erosion. We compile data that span the complete range of magmatism, from laccoliths, forced folds, and InSAR‐detected active intrusions, to explosive and effusive eruption deposits, cinder cones, stratovolcanoes, and calderas. Distributions of magmatic landforms represent topographic perturbations that span >10 orders of magnitude in planform areas and >6 orders of magnitude in relief, varying strongly with the style of magmatism. We show that, independent of erodibility or climate considerations, observed magmatic landform geometry implies a wide range of potential for erosion, due to trade‐offs between slope and drainage area in common erosion laws. Because the occurrence rate of magmatic events varies systematically with the volume of material emplaced, only a restricted class of magmatic processes is likely to directly compete with erosion to shape topography. Outside of this range, magmatism either is insignificant on landscape scales or overwhelms preexisting topography and acts to reset the landscape. The landform data compiled here provide a basis for disentangling competing processes that build and erode topography in volcanic provinces, reconstructing timing and volumes of volcanism in the geologic record, and assessing mechanical connections between climate and magmatism

    High-Precision U-Pb Geochronology Links Magmatism in the Southwestern Laurentia Large Igneous Province and Midcontinent Rift

    Get PDF
    The Southwestern Laurentia large igneous province (SWLLIP) comprises voluminous, widespread ca 1.1 Ga magmatism in the southwestern United States and northern Mexico. The timing and tempo of SWLLIP magmatism and its relationship to other late Mesoproterozoic igneous provinces have been unclear due to difficulties in dating mafic rocks at high precision. New precise U-Pb zircon dates for comagmatic felsic segregations within mafic rocks reveal distinct magmatic episodes at ca. 1098 Ma (represented by massive sills in Death Valley, California, the Grand Canyon, and central Arizona) and ca. 1083 Ma (represented by the Cardenas Basalts in the Grand Canyon and a sill in the Dead Mountains, California). The ca. 1098 Ma magmatic pulse was short-lived, lasting 0.25^+0.67_-0.24 m.y., and voluminous and widespread, evidenced by the ≄100 m sills in Death Valley, the Grand Canyon, and central Arizona, consistent with decompression melting of an upwelling mantle plume. The ca. 1083 Ma magmatism may have been generated by a secondary plume pulse or post-plume lithosphere extension. The ca. 1098 Ma pulse of magmatism in southwestern Laurentia occurred ≁2 m.y. prior to an anomalous renewal of voluminous melt generation in the Midcontinent Rift of central Laurentia that is recorded by the ca. 1096 Ma Duluth Complex layered mafic intrusions. Rates of lateral plume spread predicted by mantle plume lubrication theory support a model where a plume derived from the deep mantle impinged near southwestern Laurentia, then spread to thinned Midcontinent Rift lithosphere over ~2 m.y. to elevate mantle temperatures and generate melt. This geodynamic hypothesis reconciles the close temporal relationships between voluminous magmatism across Laurentia and provides an explanation for that anomalous renewal of high magmatic flux within the protracted magmatic history of the Midcontinent Rift

    The Prevalence and Significance of Offset Magma Reservoirs at Arc Volcanoes

    Get PDF
    Determining the spatial relations between volcanic edifices and their underlying magma storage zones is fundamental for characterizing long‐term evolution and short‐term unrest. We compile centroid locations of upper crustal magma reservoirs at 56 arc volcanoes inferred from seismic, magnetotelluric, and geodetic studies. We show that magma reservoirs are often horizontally offset from their associated volcanic edifices by multiple kilometers, and the degree of offset broadly scales with reservoir depth. Approximately 20% of inferred magma reservoir centroids occur outside of the overlying volcano's mean radius. Furthermore, reservoir offset is inversely correlated with edifice size. Taking edifice volume as a proxy for long‐term magmatic flux, we suggest that high flux or prolonged magmatism leads to more centralized magma storage beneath arc volcanoes by overprinting upper crustal heterogeneities that would otherwise affect magma ascent. Edifice volumes therefore reflect the spatial distribution of underlying magma storage, which could help guide monitoring strategies at volcanoes

    The laurentian record of neoproterozoic glaciation, tectonism, and eukaryotic evolution in Death Vally, California

    Get PDF
    Neoproterozoic strata in Death Valley, California contain eukaryotic microfossils and glacial deposits that have been used to assess the severity of putative Snowball Earth events and the biological response to extreme environmental change. These successions also contain evidence for syn-sedimentary faulting that has been related to the rifting of Rodinia, and in turn the tectonic context of the onset of Snowball Earth. These interpretations hinge on local geological relationships and both regional and global stratigraphic correlations. Here we present new geological mapping, measured stratigraphic sections, carbon and strontium isotope chemostratigraphy, and micropaleontology from the Neoproterozoic glacial deposits and bounding strata in Death Valley. These new data enable us to refine regional correlations both across Death Valley and throughout Laurentia, and construct a new age model for glaciogenic strata and microfossil assemblages. Particularly, our remapping of the Kingston Peak Formation in the Saddle Peak Hills and near the type locality shows for the first time that glacial deposits of both the Marinoan and Sturtian glaciations can be distinguished in southeastern Death Valley, and that beds containing vase-shaped microfossils are slump blocks derived from the underlying strata. These slump blocks are associated with multiple overlapping unconformities that developed during syn-sedimentary faulting, which is a common feature of Cyrogenian strata along the margin of Laurentia from California to Alaska. With these data, we conclude that all of the microfossils that have been described to date in Neoproterozoic strata of Death Valley predate the glaciations and do not bear on the severity, extent or duration of Neoproterozoic Snowball Earth events

    Incision history of the Black Canyon of Gunnison, Colorado, over the past ~1 Ma inferred from dating of fluvial gravel deposits

    Get PDF
    Spatio-temporal variability in fluvial incision rates in bedrock channels provides data regarding uplift and denudation histories of landscapes. The longitudinal profi le of the Gunnison River (Colorado), tributary to the Colorado River, contains a prominent knickzone with 800 m of relief across it within the Black Canyon of the Gunnison. Average bedrock incision rates over the last 0.64 Ma surrounding the knickpoint vary from 150 m/Ma (downstream) to 400-550 m/Ma (within) to 90-95 m/Ma (upstream), suggesting it is a transient feature. Lava Creek B ash constrains strath terraces along a paleoprofi le of the river. An isochron cosmogenic burial date in the paleo-Bostwick River of 870 ± 220 ka is consistent with the presence of 0.64 Ma Lava Creek B ash in locally derived, stratigraphically younger sediment. With 350 m of incision since deposition, we determine an incision rate of 400-550 m/Ma, reflecting incision through resistant basement rock at 2-3 times regional incision rates. Such contrast is attributed to a wave of transient incision, potentially initiated by downstream base-level fall during abandonment of Unaweep Canyon at ca. 1 Ma. Rate extrapolation indicates that the ~700 m depth of Black Canyon has been eroded since 1.3-1.75 Ma. The Black Canyon knickpoint overlies a strong gradient between low-velocity mantle under the Colorado Rockies and higher-velocity mantle of the Colorado Plateau. We interpret recent reorganization and transient incision of both the Gunnison River and upper Colorado River systems to be a response to mantle-driven epeirogenic uplift of the southern Rockies in the last 10 Ma
    • 

    corecore