5 research outputs found

    The influence of micro and macro porosity of paper on wet repellence mottling in offset printing

    Get PDF
    Fountain solution induced mottling in offset printing manifests as nonhomogenous printing area with optical variation has several influencing factors. One mechanism is that the fountain solution from the previous printing unit has no time to absorb into the coating before ink transfer or the ink cannot emulsify the water and stays on top of the ink surface as an additional hydrophilic layer. In paper coating development, the paper chemistry influences the surface chemistry features of the inkpaper coating interaction and can cause water repellency. Porosity and the absorbing capacity of paper and its coating is of great importance to avoid press related problems. In this paper, we have examined paper substrates which were reported to cause wet repellence mottling and tested their porosity ratio of micro and macro pores and their water/ ink absorption properties. The micro macro porosity was determined by using easy and low-cost proprietary technique for the porosity ratio determination. We have measured ink stabilization values, penetration dynamics, wet repellence mottling and micro and macro porosity on paper samples printed with laboratory sheet-fed offset printing. We have found that the lower number of macropores and non-optimal micro and macropore distribution influenced the occurrence of water induced wet repellence and lowered the optical homogeneity of the samples

    Influence of Ink Curing in UV LED Inkjet Printing on Colour Differences, Ink Bleeding and Abrasion Resistance of Prints on Textile

    Get PDF
    Digital printing techniques are increasingly present in the field of textile printing. Particularly prominent is the inkjet printing technique using water-based inks, UV LED inkjet printing also increasingly being in use. UV LED inkjet is primarily not intended for direct clothing printing; however, it can be used especially as a hybrid solution in the soft signage market. It is a great option for the printers that are not engaged only in textile printing, and want a more versatile print portfolio, extending it to non-clothing textile products, e.g. soft signage and non-wearable products. As these types of products often require colour reproduction of logos, accurate colour reproduction, good ink adhesion and sharpness are important just like in other printing technologies. In order to evaluate the impact of UV LED radiation amount on colour differences, ink bleeding and abrasion resistance, six different fabric samples (five woven and one nonwoven) were printed using a UV LED inkjet printer. Based on the results of colour difference, it was established that a reduction of UV radiation (by half the manufacturer’s recommended amount) had no effect on this parameter. However, perceptible colour differences were observed with the use of different M measurement conditions defined by the international standard ISO 13655-2017. Reducing the amount of UV radiation had no effect on the adhesion and durability of the printed ink. Small differences detected in these two parameters were mainly a consequence of the properties of textile materials and not of decreased UV radiation

    Sustainable food packaging: An updated definition following a holistic approach

    Get PDF
    Food packaging solutions need to be redesigned to be more sustainable, but determining which solution is ‘more optimal’ is a very difficult task when considering the entire food product value chain. Previous papers paved the way toward a sustainable food packaging definition, but it is far from being commonly accepted or well usable in the broad food systems domain, which further results in uninformed choices for sustainable food packaging made by all stakeholders in the value chain: producers, distributors, practitioners and consumers. Therefore, this work aims first at giving a state-of-the-art overview of sustainable food packaging terms (38 similar terms were identified and grouped into four clusters: Sustainable, Circular, Bio and Other sustainable packaging) and definitions using systematic (narrative) review analysis and ‘controlled expert opinion feedback’ methodology. Second, it aims to offer an updated definition for sustainable food packaging, which is also specific to food packaging and be simple, coherent, easily understandable, and communicable to everybody. The applied holistic approach intends to include all aspects of the food-packaging unit, to consider food safety and packaging functionality, while taking into account different disciplines and challenges related to food packaging along the supply chain. Being a balancing act, a sustainable food packaging may not be a perfect solution, but contextual, suboptimal and in need of constant validation.info:eu-repo/semantics/publishedVersio

    IoT electrochemical sensor with integrated ▫Ni(OH)2NiNi(OH)_2–Ni▫ nanowires for detecting formaldehyde in tap water

    Get PDF
    Simple, low-cost methods for sensing volatile organic compounds that leave no trace and do not have a detrimental effect on the environment are able to protect communities from the impacts of contaminants in water supplies. This paper reports the development of a portable, autonomous, Internet of Things (IoT) electrochemical sensor for detecting formaldehyde in tap water. The sensor is assembled from electronics, i.e., a custom-designed sensor platform and developed HCHO detection system based on Ni(OH)2–Ni nanowires (NWs) and synthetic-paper-based, screen-printed electrodes (pSPEs). The sensor platform, consisting of the IoT technology, a Wi-Fi communication system, and a miniaturized potentiostat can be easily connected to the Ni(OH)2–Ni NWs and pSPEs via a three-terminal electrode. The custom-made sensor, which has a detection capability of 0.8 µM/24 ppb, was tested for an amperometric determination of the HCHO in deionized (DI) and tap-water-based alkaline electrolytes. This promising concept of an electrochemical IoT sensor that is easy to operate, rapid, and affordable (it is considerably cheaper than any lab-grade potentiostat) could lead to the straightforward detection of HCHO in tap water
    corecore