345 research outputs found

    Procedural theory - mental activity progressions, sketching and drawing procedure during the design process

    Get PDF
    Landscaping is the act of taking a piece of land and analysing, evaluating, and beautifying it, while focusing on maintaining and increasing sustainability, functionality, and usability for people in a cost-effective way. The course Urban Landscape Design (LK0400) is a bachelor’s level course focusing on design of urban green spaces, offered at the Swedish University of Agricultural Sciences, and run by the Department of Landscape Architecture, Planning and Management (LTV faculty). The course is run as a stand-alone course for national and international students and as a programme course in the Landscape Engineer Programme at Uppsala and Alnarp, and in the Garden Design, Landscape Engineer Programme at Alnarp

    Π˜Π—Π£Π§Π•ΠΠ˜Π• ΠŸΠ ΠžΠ¦Π•Π‘Π‘ΠžΠ’ Π”Π˜Π€Π€Π£Π—Π˜Π˜ ПРИ Π ΠΠ—Π ΠΠ‘ΠžΠ’ΠšΠ• Π“ΠΠ—ΠžΠ“Π˜Π”Π ΠΠ’ΠΡ‹Π₯ ЗАЛЕЖЕЙ

    Get PDF
    Π’ΠΈΠ²Ρ‡Π΅Π½Π° Ρ€ΠΎΠ»ΡŒ процСсів Π΄ΠΈΡ„ΡƒΠ·Ρ–Ρ— ΠΏΡ€ΠΈ Ρ€ΠΎΠ·Ρ€ΠΎΠ±Ρ†Ρ– Π³Π°Π·ΠΎΠ³Ρ–Π΄Ρ€Π°Ρ‚Π½ΠΈΡ… ΠΏΠΎΠΊΠ»Π°Π΄Ρ–Π². ΠŸΡ€ΠΎΠ°Π½Π°- Π»Ρ–Π·ΠΎΠ²Π°Π½Ρ– ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ– ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΠΈ проходТСння Π³Π°Π·Ρƒ ΠΊΡ€Ρ–Π·ΡŒ пористі сСрСдовища. Π ΠΎΠ·- глянуто Π²ΠΏΠ»ΠΈΠ² Π±Ρ€ΠΎΡƒΠ½Ρ–Π²ΡΡŒΠΊΠΎΠ³ΠΎ Ρ€ΡƒΡ…Ρƒ частинок ΠΏΡ€ΠΈ Π²ΠΈΠ΄ΠΎΠ±ΡƒΠ²Π°Π½Π½Ρ– Π³Π°Π·Ρƒ Π· ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΈΡ… Π³Π°Π·ΠΎΠ³Ρ–Π΄Ρ€Π°Ρ‚Ρ–Π². Π˜Π·ΡƒΡ‡Π΅Π½Π° Ρ€ΠΎΠ»ΡŒ процСссов Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΈ ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Π³Π°Π·ΠΎΠ³ΠΈΠ΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… Π·Π°Π»Π΅ΠΆΠ΅ΠΉ. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ прохоТдСния Π³Π°Π·Π° сквозь порис- Ρ‚Ρ‹Π΅ срСды. РассмотрСно влияниС броуновского двиТСния частиц ΠΏΡ€ΠΈ Π΄ΠΎΠ±Ρ‹Ρ‡Π΅ Π³Π°Π·Π° ΠΈΠ· ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… Π³Π°Π·ΠΎΠ³ΠΈΠ΄Ρ€Π°Ρ‚ΠΎΠ². The role of diffusion processes in development of gas hydrate deposits is exam- ined. Possible mechanisms of passing of gas through porous media are analyzed. The effect of Brownian motion of particles during the extraction of natural gas from gas hydrates is considered

    Interleukin-8 Is Activated in Patients with Chronic Liver Diseases and Associated with Hepatic Macrophage Accumulation in Human Liver Fibrosis

    Get PDF
    BACKGROUND: Interleukin-8 (IL-8, CXCL8) is a potent chemoattractant for neutrophils and contributes to acute liver inflammation. Much less is known about IL-8 in chronic liver diseases (CLD), but elevated levels were reported from alcoholic and hepatitis C-related CLD. We investigated the regulation of IL-8, its receptors CXCR1 and CXCR2 and possible IL-8 responding cells in CLD patients. METHODOLOGY: Serum IL-8 levels were measured in CLD patients (nβ€Š=β€Š200) and healthy controls (nβ€Š=β€Š141). Intrahepatic IL-8, CXCR1 and CXCR2 gene expression was quantified from liver samples (nβ€Š=β€Š41), alongside immunohistochemical neutrophil (MPO) and macrophage (CD68) stainings. CXCR1 and CXCR2 expression was analyzed on purified monocytes from patients (nβ€Š=β€Š111) and controls (nβ€Š=β€Š31). In vitro analyses explored IL-8 secretion by different leukocyte subsets. PRINCIPAL FINDINGS: IL-8 serum levels were significantly increased in CLD patients, especially in end-stage cirrhosis. Interestingly, patients with cholestatic diseases exhibited highest IL-8 serum concentrations. IL-8 correlated with liver function, inflammatory cytokines and non-invasive fibrosis markers. Intrahepatically, IL-8 and CXCR1 expression were strongly up-regulated. However, intrahepatic IL-8 could only be associated to neutrophil infiltration in patients with primary biliary cirrhosis (PBC). In non-cholestatic cirrhosis, increased IL-8 and CXCR1 levels were associated with hepatic macrophage accumulation. In line, CXCR1, but not CXCR2 or CXCR3, expression was increased on circulating monocytes from cirrhotic patients. Moreover, monocyte-derived macrophages from CLD patients, especially the non-classical CD16⁺ subtype, displayed enhanced IL-8 secretion in vitro. CONCLUSIONS: IL-8 is strongly activated in CLD, thus likely contributing to hepatic inflammation. Our study suggests a novel role of IL-8 for recruitment and activation of hepatic macrophages via CXCR1 in human liver cirrhosis

    Bone marrow-derived and resident liver macrophages display unique transcriptomic signatures but similar biological functions

    Get PDF
    Abstract: Background and aims: Kupffer cells (KCs), the resident tissue macrophages of the liver, play a crucial role in the clearance of pathogens and other particulate materials that reach the systemic circulation. Recent studies have identified KCs as a yolk sac-derived resident macrophage population that is replenished independently of monocytes in the steady state. Although it is now established that following local tissue injury, bone-marrow derived monocytes may infiltrate the tissue and differentiate into macrophages, the extent to which newly differentiated macrophages functionally resemble the KCs they have replaced has not been extensively studied. Methods and results: Here we show using intravital microscopy, morphometric analysis and gene expression profiling that bone marrow derived β€œKCs” accumulating as a result of genotoxic injury resemble, but are not identical to their yolk-sac (YS) counterparts. An ion homeostasis gene signature, including genes associated with scavenger receptor function and extracellular matrix deposition, allows discrimination between these two KC populations. Reflecting the differential expression of scavenger receptors, YS-derived KCs were more effective at accumulating Ac-LDL, whereas surprisingly they were poorer than BM-derived KCs when assessed for uptake of a range of bacterial pathogens. The two KC populations were almost indistinguishable in regard to i) response to LPS challenge, ii) phagocytosis of effete RBCs and iii) their ability to contain infection and direct granuloma formation against Leishmania donovani, a KC-tropic intracellular parasite. Conclusions: BM-derived KCs differentiate locally to resemble YS-derived KC in most but not all respects, with implications for models of infectious diseases, liver injury and bone marrow transplantation. In addition, the gene signature we describe adds to the tools available for distinguishing KC subpopulations based on their ontology

    Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis

    Get PDF
    Although macrophages are widely recognized to have a profibrotic role in inflammation, we have used a highly tractable CCl(4)-induced model of reversible hepatic fibrosis to identify and characterize the macrophage phenotype responsible for tissue remodeling: the hitherto elusive restorative macrophage. This CD11B(hi) F4/80(int) Ly-6C(lo) macrophage subset was most abundant in livers during maximal fibrosis resolution and represented the principle matrix metalloproteinase (MMP) -expressing subset. Depletion of this population in CD11B promoter–diphtheria toxin receptor (CD11B-DTR) transgenic mice caused a failure of scar remodeling. Adoptive transfer and in situ labeling experiments showed that these restorative macrophages derive from recruited Ly-6C(hi) monocytes, a common origin with profibrotic Ly-6C(hi) macrophages, indicative of a phenotypic switch in vivo conferring proresolution properties. Microarray profiling of the Ly-6C(lo) subset, compared with Ly-6C(hi) macrophages, showed a phenotype outside the M1/M2 classification, with increased expression of MMPs, growth factors, and phagocytosis-related genes, including Mmp9, Mmp12, insulin-like growth factor 1 (Igf1), and Glycoprotein (transmembrane) nmb (Gpnmb). Confocal microscopy confirmed the postphagocytic nature of restorative macrophages. Furthermore, the restorative macrophage phenotype was recapitulated in vitro by the phagocytosis of cellular debris with associated activation of the ERK signaling cascade. Critically, induced phagocytic behavior in vivo, through administration of liposomes, increased restorative macrophage number and accelerated fibrosis resolution, offering a therapeutic strategy to this orphan pathological process

    Human Amniotic Epithelial Cell Transplantation Induces Markers of Alternative Macrophage Activation and Reduces Established Hepatic Fibrosis

    Get PDF
    Chronic hepatic inflammation from multiple etiologies leads to a fibrogenic response that can progress to cirrhosis and liver failure. Transplantation of human amniotic epithelial cells (hAEC) from term delivered placenta has been shown to decrease mild to moderate hepatic fibrosis in a murine model. To model advanced human liver disease and assess the efficacy of hAEC therapy, we transplanted hAEC in mice with advanced hepatic fibrosis. Immunocompetent C57BL/6 mice were administered carbon tetrachloride (CCl4) twice weekly resulting in bridging fibrosis by 12 weeks. hAEC (2Γ—106) were infused via the tail vein at week 8 or weeks 8 and 10 (single and double dose, respectively). Human cells were detected in mouse liver four weeks after transplantation showing hAEC engraftment. CCl4 treated mice receiving single or double hAEC doses showed a significant but similar decrease in liver fibrosis area associated with decreased activation of collagen-producing hepatic stellate cells and decreased hepatic protein levels of the pro-fibrogenic cytokine, transforming growth factor-beta1. CCl4 administration caused hepatic T cell infiltration that decreased significantly following hAEC transplantation. Hepatic macrophages play a crucial role in both fibrogenesis and fibrosis resolution. Mice exposed to CCl4 demonstrated increased numbers of hepatic macrophages compared to normal mice; the number of macrophages decreased significantly in CCl4 treated mice given hAEC. These mice had significantly lower hepatic protein levels of the chemokine monocyte chemoattractant protein-1 than mice given CCl4 alone. Alternatively activated M2 macrophages are associated with fibrosis resolution. CCl4 treated mice given hAEC showed increased expression of genes associated with M2 macrophages including YM-1, IL-10 and CD206. We provide novel data showing that hAEC transplantation induces a wound healing M2 macrophage phenotype associated with reduction of established hepatic fibrosis that justifies further investigation of this potential cell-based therapy for advanced hepatic fibrosis

    Functional Contribution of Elevated Circulating and Hepatic Non-Classical CD14+CD16+ Monocytes to Inflammation and Human Liver Fibrosis

    Get PDF
    BACKGROUND: Monocyte-derived macrophages critically perpetuate inflammatory responses after liver injury as a prerequisite for organ fibrosis. Experimental murine models identified an essential role for the CCR2-dependent infiltration of classical Gr1/Ly6C(+) monocytes in hepatic fibrosis. Moreover, the monocyte-related chemokine receptors CCR1 and CCR5 were recently recognized as important fibrosis modulators in mice. In humans, monocytes consist of classical CD14(+)CD16(-) and non-classical CD14(+)CD16(+) cells. We aimed at investigating the relevance of monocyte subpopulations for human liver fibrosis, and hypothesized that 'non-classical' monocytes critically exert inflammatory as well as profibrogenic functions in patients during liver disease progression. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed circulating monocyte subsets from freshly drawn blood samples of 226 patients with chronic liver disease (CLD) and 184 healthy controls by FACS analysis. Circulating monocytes were significantly expanded in CLD-patients compared to controls with a marked increase of the non-classical CD14(+)CD16(+) subset that showed an activated phenotype in patients and correlated with proinflammatory cytokines and clinical progression. Correspondingly, CD14(+)CD16(+) macrophages massively accumulated in fibrotic/cirrhotic livers, as evidenced by immunofluorescence and FACS. Ligands of monocyte-related chemokine receptors CCR2, CCR1 and CCR5 were expressed at higher levels in fibrotic and cirrhotic livers, while CCL3 and CCL4 were also systemically elevated in CLD-patients. Isolated monocyte/macrophage subpopulations were functionally characterized regarding cytokine/chemokine expression and interactions with primary human hepatic stellate cells (HSC) in vitro. CD14(+)CD16(+) monocytes released abundant proinflammatory cytokines. Furthermore, CD14(+)CD16(+), but not CD14(+)CD16(-) monocytes could directly activate collagen-producing HSC. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate the expansion of CD14(+)CD16(+) monocytes in the circulation and liver of CLD-patients upon disease progression and suggest their functional contribution to the perpetuation of intrahepatic inflammation and profibrogenic HSC activation in liver cirrhosis. The modulation of monocyte-subset recruitment into the liver via chemokines/chemokine receptors and their subsequent differentiation may represent promising approaches for therapeutic interventions in human liver fibrosis

    Tissue Microenvironments Define and Get Reinforced by Macrophage Phenotypes in Homeostasis or during Inflammation, Repair and Fibrosis

    Get PDF
    Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical tissue environments, e.g. as they occur during homeostasis as well as during the different phases of (dermal) wound healing. In tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce proinflammatory macrophages by Toll-like receptors or inflammasomes. Such classically activated macrophages contribute to further tissue inflammation and damage. Apoptotic cells and antiinflammatory cytokines dominate in postinflammatory tissues which induce macrophages to produce more antiinflammatory mediators. Similarly, tumor-associated macrophages also confer immunosuppression in tumor stroma. Insufficient parenchymal healing despite abundant growth factors pushes macrophages to gain a profibrotic phenotype and promote fibrocyte recruitment which both enforce tissue scarring. Ischemic scars are largely devoid of cytokines and growth factors so that fibrolytic macrophages that predominantly secrete proteases digest the excess extracellular matrix. Together, macrophages stabilize their surrounding tissue microenvironments by adapting different phenotypes as feed-forward mechanisms to maintain tissue homeostasis or regain it following injury. Furthermore, macrophage heterogeneity in healthy or injured tissues mirrors spatial and temporal differences in microenvironments during the various stages of tissue injury and repair. Copyright (C) 2012 S. Karger AG, Base
    • …
    corecore