939 research outputs found

    Immobilizing bacteriorhodopsin on a single electron transistor

    Get PDF
    As awareness of potential human and environmental impacts from toxins has increased, so has the development of innovative sensors. Bacteriorhodopsin (bR) is a light activated proton pump contained in the purple membrane (PM) of the bacteria Halobacterium salinarum. Bacteriorhodopsin is a robust protein which can function in both wet and dry states and can withstand extreme environmental conditions. A single electron transistor(SET) is a nano-scale device that exploits the quantum mechanical properties of electrons to switch on and off. SETs have tremendous potential in practical applications due to their size, ultra low power requirements, and electrometer-like sensitivity. The main goal of this research was to create a bionanohybrid device by integrating bR with a SET device. This was achieved by a multidisciplinary approach. The SET devices were created by a combination of sputtering, photolithography, and focused ion beam machining. The bionanomaterial bacteriorhodopsin was created through oxidative fermentation and a series of transmembrane purification processes. The bR was then integrated with the SET by electrophoretic deposition, creating a bionanohybrid device. The bionanohybrid device was then characterized using a semiconductor parametric analyzer. Characterization demonstrated that the bR modulated the operational characteristics of the SET when bR was activated with light within its absorbance spectrum. To effectively integrate bacteriorhodopsin with microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS), it is critical to know the electrical properties of the material and to understand how it will affect the functionality of the device. Tests were performed on dried films of bR to determine if there is a relationship between inductance, capacitance, and resistance (LCR) measurements and orientation, light-on/off, frequency, and time. The results indicated that the LCR measurements of the bR depended on the thickness and area of the film, but not on the orientation, as with other biological materials such as muscle. However, there was a transient LCR response for both oriented and unoriented bR which depended on light intensity. From the impedance measurements an empirical model was suggested for the bionanohybrid device. The empirical model is based on the dominant electrical characteristics of the bR which were the parallel capacitance and resistance. The empirical model suggests that it is possible to integrate bR with a SET without influencing its functional characteristics

    Light sensor platform based on the integration of Bacteriorhodopsin with a single electron transistor

    Get PDF
    This paper reports on the integration of an optical protein with single electron transistors to form a nano-bio-hybrid device for sensing. Bacteriorhodopsin (bR) is an optoelectric protein that translocates a proton across a distance of several nanometers in response to an absorbed photon of incident light. This charge gradient results in a measurable voltage in the dried state. Single electron transistors (SETs) have active regions consisting of one or more quantum islands with a size typically 10 nanometers or less. Integrating bacteriorhodopsin with the gate of a SET provides a device capable of a modulated electrical output in response to optical modulation at the device gate. Modulation of the optoelectric activity of the bR by chemical binding with a targeted environmental antigen can form a direct chemical-to-electrical sensor reducing the size and complexity of fluorescence-based systems. The work resulted in electrical resistance and capacitance characterization of purple membrane containing bR under variable illumination to ensure minimal impact on SET operation. Purple membrane containing bacteriorhodopsin was electrodeposited on the SET gates, and current throughput was well correlated with variable and cyclic illumination. It was confirmed that bR optoelectric activity is capable of driving SETs

    An experimental and modeling/simulation-based evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system

    Get PDF
    The efficiency limits, gas-crossover behavior, formation of local pH gradients near the electrode surfaces, and safety characteristics have been evaluated experimentally as well as by use of multi-physics modeling and simulation methods for an integrated solar-driven water-splitting system that operates with bulk electrolyte solutions buffered at near-neutral pH. The integrated membrane-free system utilized a triple-junction amorphous hydrogenated Si (a-Si:H) cell as the light absorber, Pt and cobalt phosphate (Co–Pi) as electrocatalysts for the hydrogen-evolution reaction (HER) and oxygen-evolution reaction (OER), respectively, and a bulk aqueous solution buffered at pH = 9.2 by 1.0 M of boric acid/borate as an electrolyte. Although the solar-to-electrical efficiency of the stand-alone triple-junction a-Si:H photovoltaic cell was 7.7%, the solar-to-hydrogen (STH) conversion efficiency for the integrated membrane-free water-splitting system was limited under steady-state operation to 3.2%, and the formation of pH gradients near the electrode surfaces accounted for the largest voltage loss. The membrane-free system exhibited negligible product-recombination loss while operating at current densities near 3.0 mA cm^(−2), but exhibited significant crossover of products (up to 40% H_2 in the O_2 chamber), indicating that the system was not intrinsically safe. A system that contained a membrane to minimize the gas crossover, but which was otherwise identical to the membrane-free system, yielded very low energy-conversion efficiencies at steady state, due to low transference numbers for protons across the membranes resulting in electrodialysis of the solution and the consequent formation of large concentration gradients of both protons and buffer counterions near the electrode surfaces. The modeling and simulation results showed that despite the addition of 1.0 M of buffering agent to the bulk of the solution, during operation significant pH gradients developed near the surfaces of the electrodes. Hence, although the bulk electrolyte was buffered to near-neutral pH, the electrode surfaces and electrocatalysts experienced local environments under steady-state operation that were either highly acidic or highly alkaline in nature, changing the chemical form of the electrocatalysts and exposing the electrodes to potentially corrosive local pH conditions. In addition to significant pH gradients, the STH conversion efficiency of both types of systems was limited by the mass transport of ionic species to the electrode surfaces. Even at operating current densities of <3 mA cm^(−2), the voltage drops due to these pH gradients exceeded the combined electrocatalyst overpotentials for the hydrogen- and oxygen-evolution reactions at current densities of 10 mA cm^(−2). Hence, such near-neutral pH solar-driven water-splitting systems were both fundamentally limited in efficiency and/or co-evolved explosive mixtures of H_2(g) and O_2(g) in the presence of active catalysts for the recombination of H_2(g) and O_2(g)

    Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting

    Get PDF
    Laboratory demonstrations of spontaneous photoelectrochemical (PEC) solar water splitting cells are reviewed. Reported solar-to-hydrogen (STH) conversion efficiencies range from 10% STH efficiency using potentially less costly materials have been reported. Device stability is a major challenge for the field, as evidenced by lifetimes of less than 24 hours in all but a few reports. No globally accepted protocol for evaluating and certifying STH efficiencies and lifetimes exists. It is our recommendation that a protocol similar to that used by the photovoltaic community be adopted so that future demonstrations of solar PEC water splitting can be compared on equal grounds

    Net primary energy balance of a solar-driven photoelectrochemical water-splitting device

    Get PDF
    A fundamental requirement for a renewable energy generation technology is that it should produce more energy during its lifetime than is required to manufacture it. In this study we evaluate the primary energy requirements of a prospective renewable energy technology, solar-driven photoelectrochemical (PEC) production of hydrogen from water. Using a life cycle assessment (LCA) methodology, we evaluate the primary energy requirements for upstream raw material preparation and fabrication under a range of assumptions of processes and materials. As the technology is at a very early stage of research and development, the analysis has considerable uncertainties. We consider and analyze three cases that we believe span a relevant range of primary energy requirements: 1550 MJ m(-2) (lower case), 2110 MJ m(-2) (medium case), and 3440 MJ m(-2) (higher case). We then use the medium case primary energy requirement to estimate the net primary energy balance (energy produced minus energy requirement) of the PEC device, which depends on device performance, e. g. longevity and solar-to-hydrogen (STH) efficiency. We consider STH efficiency ranging from 3% to 10% and longevity ranging from 5 to 30 years to assist in setting targets for research, development and future commercialization. For example, if STH efficiency is 3%, the longevity must be at least 8 years to yield a positive net energy. A sensitivity analysis shows that the net energy varies significantly with different assumptions of STH efficiency, longevity and thermo-efficiency of fabrication. Material choices for photoelectrodes or catalysts do not have a large influence on primary energy requirements, though less abundant materials like platinum may be unsuitable for large scale-up

    Modeling, Simulation, and Fabrication of a Fully Integrated, Acid-stable, Scalable Solar-Driven Water-Splitting System

    Get PDF
    A fully integrated solar-driven water-splitting system comprised of WO3/FTO/p^(+)n Si as the photoanode, Pt/TiO_2/Ti/n^(+)p Si as the photocathode, and Nafion as the membrane separator, was simulated, assembled, operated in 1.0 M HClO_4, and evaluated for performance and safety characteristics under dual side illumination. A multi-physics model that accounted for the performance of the photoabsorbers and electrocatalysts, ion transport in the solution electrolyte, and gaseous product crossover was first used to define the optimal geometric design space for the system. The photoelectrodes and the membrane separators were then interconnected in a louvered design system configuration, for which the light-absorbing area and the solution-transport pathways were simultaneously optimized. The performance of the photocathode and the photoanode were separately evaluated in a traditional three-electrode photoelectrochemical cell configuration. The photocathode and photoanode were then assembled back-to-back in a tandem configuration to provide sufficient photovoltage to sustain solar-driven unassisted water-splitting. The current–voltage characteristics of the photoelectrodes showed that the low photocurrent density of the photoanode limited the overall solar-to-hydrogen (STH) conversion efficiency due to the large band gap of WO_3. A hydrogen-production rate of 0.17 mL hr^−1 and a STH conversion efficiency of 0.24 % was observed in a full cell configuration for >20 h with minimal product crossover in the fully operational, intrinsically safe, solar-driven water-splitting system. The solar-to-hydrogen conversion efficiency, ηS_TH, calculated using the multiphysics numerical simulation was in excellent agreement with the experimental behavior of the system. The value of ηSTH was entirely limited by the performance of the photoelectrochemical assemblies employed in this study. The louvered design provides a robust platform for implementation of various types of photoelectrochemical assemblies, and can provide an approach to significantly higher solar conversion efficiencies as new and improved materials become available

    Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices

    Get PDF
    An integrated cell for the solar-driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC) processes at different length and time scales. The overall solar-to-hydrogen (STH) conversion efficiency of such a system depends on the performance and materials properties of the individual components as well as on the component integration, overall device architecture, and system operating conditions. This Review focuses on the modeling- and simulation-guided development and implementation of solar-driven water-splitting prototypes from a holistic viewpoint that explores the various interplays between the components. The underlying physics and interactions at the cell level is are reviewed and discussed, followed by an overview of the use of the cell model to provide target properties of materials and guide the design of a range of traditional and unique device architectures

    CD95 co-stimulation blocks activation of naive T cells by inhibiting T cell receptor signaling

    Get PDF
    CD95 is a multifunctional receptor that induces cell death or proliferation depending on the signal, cell type, and cellular context. Here, we describe a thus far unknown function of CD95 as a silencer of T cell activation. Naive human T cells triggered by antigen-presenting cells expressing a membrane-bound form of CD95 ligand (CD95L) or stimulated by anti-CD3 and -CD28 antibodies in the presence of recombinant CD95L had reduced activation and proliferation, whereas preactivated, CD95-sensitive T cells underwent apoptosis. Triggering of CD95 during T cell priming interfered with proximal T cell receptor signaling by inhibiting the recruitment of ζ-chain–associated protein of 70 kD, phospholipase-γ, and protein kinase C-θ into lipid rafts, thereby preventing their mutual tyrosine protein phosphorylation. Subsequently, Ca2+ mobilization and nuclear translocation of transcription factors NFAT, AP1, and NF-κB were strongly reduced, leading to impaired cytokine secretion. CD95-mediated inhibition of proliferation in naive T cells could not be reverted by the addition of exogenous interleukin-2 and T cells primed by CD95 co-stimulation remained partially unresponsive upon secondary T cell stimulation. HIV infection induced CD95L expression in primary human antigeen-presenting cells, and thereby suppressed T cell activation, suggesting that CD95/CD95L-mediated silencing of T cell activation represents a novel mechanism of immune evasion

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis
    corecore