329 research outputs found

    Myelin damage and repair in pathologic CNS: challenges and prospects

    Get PDF
    Injury to the central nervous system (CNS) results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells (OPCs) and neural stem/progenitor cells (NPCs) contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal. Emerging evidence indicates that optimal remyelination is restricted by multiple factors including (i) low levels of factors that promote oligodendrogenesis; (ii) cell death among newly generated oligodendrocytes, (iii) inhibitory factors in the post-injury milieu that impede remyelination, and (iv) deficient expression of key growth factors essential for proper re-construction of a highly organized myelin sheath. Considering these challenges, over the past several years, a number of cell-based strategies have been developed to optimize remyelination therapeutically. Outcomes of these basic and preclinical discoveries are promising and signify the importance of remyelination as a mechanism for improving functions in CNS injuries. In this review, we provide an overview on: 1) the precise organization of myelinated axons and the reciprocal axo-myelin interactions that warrant properly balanced physiological activities within the CNS; 2) underlying cause of demyelination and the structural and functional consequences of demyelination in axons following injury and disease; 3) the endogenous mechanisms of oligodendrocyte replacement; 4) the modulatory role of reactive astrocytes and inflammatory cells in remyelination; and 5) the current status of cell-based therapies for promoting remyelination. Careful elucidation of the cellular and molecular mechanisms of demyelination in the pathologic CNS is a key to better understanding the impact of remyelinati

    Genome-wide gene expression profiling of stress response in a spinal cord clip compression injury model.

    Get PDF
    BackgroundThe aneurysm clip impact-compression model of spinal cord injury (SCI) is a standard injury model in animals that closely mimics the primary mechanism of most human injuries: acute impact and persisting compression. Its histo-pathological and behavioural outcomes are extensively similar to human SCI. To understand the distinct molecular events underlying this injury model we analyzed global mRNA abundance changes during the acute, subacute and chronic stages of a moderate to severe injury to the rat spinal cord.ResultsTime-series expression analyses resulted in clustering of the majority of deregulated transcripts into eight statistically significant expression profiles. Systematic application of Gene Ontology (GO) enrichment pathway analysis allowed inference of biological processes participating in SCI pathology. Temporal analysis identified events specific to and common between acute, subacute and chronic time-points. Processes common to all phases of injury include blood coagulation, cellular extravasation, leukocyte cell-cell adhesion, the integrin-mediated signaling pathway, cytokine production and secretion, neutrophil chemotaxis, phagocytosis, response to hypoxia and reactive oxygen species, angiogenesis, apoptosis, inflammatory processes and ossification. Importantly, various elements of adaptive and induced innate immune responses span, not only the acute and subacute phases, but also persist throughout the chronic phase of SCI. Induced innate responses, such as Toll-like receptor signaling, are more active during the acute phase but persist throughout the chronic phase. However, adaptive immune response processes such as B and T cell activation, proliferation, and migration, T cell differentiation, B and T cell receptor-mediated signaling, and B cell- and immunoglobulin-mediated immune response become more significant during the chronic phase.ConclusionsThis analysis showed that, surprisingly, the diverse series of molecular events that occur in the acute and subacute stages persist into the chronic stage of SCI. The strong agreement between our results and previous findings suggest that our analytical approach will be useful in revealing other biological processes and genes contributing to SCI pathology

    Chondroitinase and Growth Factors Enhance Activation and Oligodendrocyte Differentiation of Endogenous Neural Precursor Cells after Spinal Cord Injury

    Get PDF
    The adult spinal cord harbours a population of multipotent neural precursor cells (NPCs) with the ability to replace oligodendrocytes. However, despite this capacity, proliferation and endogenous remyelination is severely limited after spinal cord injury (SCI). In the post-traumatic microenvironment following SCI, endogenous spinal NPCs mainly differentiate into astrocytes which could contribute to astrogliosis that exacerbate the outcomes of SCI. These findings emphasize a key role for the post-SCI niche in modulating the behaviour of spinal NPCs after SCI. We recently reported that chondroitin sulphate proteoglycans (CSPGs) in the glial scar restrict the outcomes of NPC transplantation in SCI by reducing the survival, migration and integration of engrafted NPCs within the injured spinal cord. These inhibitory effects were attenuated by administration of chondroitinase (ChABC) prior to NPC transplantation. Here, in a rat model of compressive SCI, we show that perturbing CSPGs by ChABC in combination with sustained infusion of growth factors (EGF, bFGF and PDGF-AA) optimize the activation and oligodendroglial differentiation of spinal NPCs after injury. Four days following SCI, we intrathecally delivered ChABC and/or GFs for seven days. We performed BrdU incorporation to label proliferating cells during the treatment period after SCI. This strategy increased the proliferation of spinal NPCs, reduced the generation of new astrocytes and promoted their differentiation along an oligodendroglial lineage, a prerequisite for remyelination. Furthermore, ChABC and GF treatments enhanced the response of non-neural cells by increasing the generation of new vascular endothelial cells and decreasing the number of proliferating macrophages/microglia after SCI. In conclusions, our data strongly suggest that optimization of the behaviour of endogenous spinal NPCs after SCI is critical not only to promote endogenous oligodendrocyte replacement, but also to reverse the otherwise detrimental effects of their activation into astrocytes which could negatively influence the repair process after SCI

    Transplantation of canine olfactory ensheathing cells producing chondroitinase ABC promotes chondroitin sulphate proteoglycan digestion and axonal sprouting following spinal cord injury

    Get PDF
    Olfactory ensheathing cell (OEC) transplantation is a promising strategy for treating spinal cord injury (SCI), as has been demonstrated in experimental SCI models and naturally occurring SCI in dogs. However, the presence of chondroitin sulphate proteoglycans within the extracellular matrix of the glial scar can inhibit efficient axonal repair and limit the therapeutic potential of OECs. Here we have used lentiviral vectors to genetically modify canine OECs to continuously deliver mammalian chondroitinase ABC at the lesion site in order to degrade the inhibitory chondroitin sulphate proteoglycans in a rodent model of spinal cord injury. We demonstrate that these chondroitinase producing canine OECs survived at 4 weeks following transplantation into the spinal cord lesion and effectively digested chondroitin sulphate proteoglycans at the site of injury. There was evidence of sprouting within the corticospinal tract rostral to the lesion and an increase in the number of corticospinal axons caudal to the lesion, suggestive of axonal regeneration. Our results indicate that delivery of the chondroitinase enzyme can be achieved with the genetically modified OECs to increase axon growth following SCI. The combination of these two promising approaches is a potential strategy for promoting neural regeneration following SCI in veterinary practice and human patients

    Human Neural Stem Cells Differentiate and Promote Locomotor Recovery in an Early Chronic Spinal coRd Injury NOD-scid Mouse Model

    Get PDF
    Traumatic spinal cord injury (SCI) results in partial or complete paralysis and is characterized by a loss of neurons and oligodendrocytes, axonal injury, and demyelination/dysmyelination of spared axons. Approximately 1,250,000 individuals have chronic SCI in the U.S.; therefore treatment in the chronic stages is highly clinically relevant. Human neural stem cells (hCNS-SCns) were prospectively isolated based on fluorescence-activated cell sorting for a CD133(+) and CD24(-/lo) population from fetal brain, grown as neurospheres, and lineage restricted to generate neurons, oligodendrocytes and astrocytes. hCNS-SCns have recently been transplanted sub-acutely following spinal cord injury and found to promote improved locomotor recovery. We tested the ability of hCNS-SCns transplanted 30 days post SCI to survive, differentiate, migrate, and promote improved locomotor recovery.hCNS-SCns were transplanted into immunodeficient NOD-scid mice 30 days post spinal cord contusion injury. hCNS-SCns transplanted mice demonstrated significantly improved locomotor recovery compared to vehicle controls using open field locomotor testing and CatWalk gait analysis. Transplanted hCNS-SCns exhibited long-term engraftment, migration, limited proliferation, and differentiation predominantly to oligodendrocytes and neurons. Astrocytic differentiation was rare and mice did not exhibit mechanical allodynia. Furthermore, differentiated hCNS-SCns integrated with the host as demonstrated by co-localization of human cytoplasm with discrete staining for the paranodal marker contactin-associated protein.The results suggest that hCNS-SCns are capable of surviving, differentiating, and promoting improved locomotor recovery when transplanted into an early chronic injury microenvironment. These data suggest that hCNS-SCns transplantation has efficacy in an early chronic SCI setting and thus expands the "window of opportunity" for intervention

    Co-transplantation of Human Embryonic Stem Cell-derived Neural Progenitors and Schwann Cells in a Rat Spinal Cord Contusion Injury Model Elicits a Distinct Neurogenesis and Functional Recovery

    Get PDF
    Co-transplantation of neural progenitors (NPs) with Schwann cells (SCs) might be a way to overcome low rate of neuronal differentiation of NPs following transplantation in spinal cord injury (SCI) and the improvement of locomotor recovery. In this study, we initially generated NPs from human embryonic stem cells (hESCs) and investigated their potential for neuronal differentiation and functional recovery when co-cultured with SCs in vitro and co-transplanted in a rat acute model of contused SCI. Co-cultivation results revealed that the presence of SCs provided a consistent status for hESC-NPs and recharged their neural differentiation toward a predominantly neuronal fate. Following transplantation, a significant functional recovery was observed in all engrafted groups (NPs, SCs, NPs+SCs) relative to the vehicle and control groups. We also observed that animals receiving co-transplants established a better state as assessed with the BBB functional test. Immunohistofluorescence evaluation five weeks after transplantation showed invigorated neuronal differentiation and limited proliferation in the co-transplanted group when compared to the individual hESC-NPs grafted group. These findings have demonstrated that the co-transplantation of SCs with hESC-NPs could offer a synergistic effect, promoting neuronal differentiation and functional recovery

    Effects of Dibutyryl Cyclic-AMP on Survival and Neuronal Differentiation of Neural Stem/Progenitor Cells Transplanted into Spinal Cord Injured Rats

    Get PDF
    Neural stem/progenitor cells (NSPCs) have great potential as a cell replacement therapy for spinal cord injury. However, poor control over transplant cell differentiation and survival remain major obstacles. In this study, we asked whether dibutyryl cyclic-AMP (dbcAMP), which was shown to induce up to 85% in vitro differentiation of NSPCs into neurons would enhance survival of transplanted NSPCs through prolonged exposure either in vitro or in vivo through the controlled release of dbcAMP encapsulated within poly(lactic-co-glycolic acid) (PLGA) microspheres and embedded within chitosan guidance channels. NSPCs, seeded in fibrin scaffolds within the channels, differentiated in vitro to betaIII-tubulin positive neurons by immunostaining and mRNA expression, in response to dbcAMP released from PLGA microspheres. After transplantation in spinal cord injured rats, the survival and differentiation of NSPCs was evaluated. Untreated NSPCs, NSPCs transplanted with dbcAMP-releasing microspheres, and NSPCs pre-differentiated with dbcAMP for 4 days in vitro were transplanted after rat spinal cord transection and assessed 2 and 6 weeks later. Interestingly, NSPC survival was highest in the dbcAMP pre-treated group, having approximately 80% survival at both time points, which is remarkable given that stem cell transplantation often results in less than 1% survival at similar times. Importantly, dbcAMP pre-treatment also resulted in the greatest number of in vivo NSPCs differentiated into neurons (37Β±4%), followed by dbcAMP-microsphere treated NSPCs (27Β±14%) and untreated NSPCs (15Β±7%). The reverse trend was observed for NSPC-derived oligodendrocytes and astrocytes, with these populations being highest in untreated NSPCs. This combination strategy of stem cell-loaded chitosan channels implanted in a fully transected spinal cord resulted in extensive axonal regeneration into the injury site, with improved functional recovery after 6 weeks in animals implanted with pre-differentiated stem cells in chitosan channels
    • …
    corecore