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ARTICLE

Locomotor recovery following contusive spinal cord
injury does not require oligodendrocyte
remyelination
Greg J. Duncan1,2, Sohrab B. Manesh1,3, Brett J. Hilton1,2,6, Peggy Assinck 1,3, Jie Liu1, Aaron Moulson1,2,

Jason R. Plemel 4 & Wolfram Tetzlaff1,2,5

Remyelination occurs after spinal cord injury (SCI) but its functional relevance is unclear. We

assessed the necessity of myelin regulatory factor (Myrf) in remyelination after contusive SCI

by deleting the gene from platelet-derived growth factor receptor alpha positive (PDGFRα-
positive) oligodendrocyte progenitor cells (OPCs) in mice prior to SCI. While OPC pro-

liferation and density are not altered by Myrf inducible knockout after SCI, the accumulation

of new oligodendrocytes is largely prevented. This greatly inhibits myelin regeneration,

resulting in a 44% reduction in myelinated axons at the lesion epicenter. However, spon-

taneous locomotor recovery after SCI is not altered by remyelination failure. In controls with

functional MYRF, locomotor recovery precedes the onset of most oligodendrocyte myelin

regeneration. Collectively, these data demonstrate that MYRF expression in PDGFRα-positive
cell derived oligodendrocytes is indispensable for myelin regeneration following contusive SCI

but that oligodendrocyte remyelination is not required for spontaneous recovery of stepping.
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Spinal cord injury (SCI) can lead to severe and permanent
motor, sensory, and autonomic dysfunction due to the adult
mammalian spinal cord’s inability to regenerate lost neu-

rons and their connections1. Most SCIs in humans do not result
in the complete transection of the spinal cord, but instead axons
are spared at the lesion epicenter2, and a period of limited
functional improvement commences soon after SCI despite axon
regeneration failure3,4. Enhancing the functional connectivity of
the spared circuitry may be a viable means of promoting func-
tional improvements following SCI5. However, oligodendrocyte
death in the weeks after SCI6 presumably results in the demye-
lination of spared axons7–10, which could diminish the func-
tionality of spared circuits. Demyelination impairs the amplitude
and speed of electrical conductance11–13 and oligodendrocyte loss
may leave axons vulnerable to degeneration14,15. For these rea-
sons, strategies to enhance oligodendrocyte remyelination of
spared axons have been hypothesized to promote functional
improvements following SCI16–19.

Myelin regeneration is a spontaneous process: new oligoden-
drocytes and Schwann cells regenerate lost myelin in the absence
of therapeutic intervention20–27. Platelet-derived growth factor
receptor alpha (PDGFRα) expression in resident, nonvascular
associated cells, identifies these cells as oligodendrocyte pro-
genitor cells (OPCs)28,29, which differentiate into new oligoden-
drocytes after SCI20,22,26. Ependymal cells can also contribute to
oligodendrocyte production, albeit minimally20,30. Intricate
transcriptional regulation is required for OPCs to differentiate
into new myelinating oligodendrocytes. During both develop-
ment and myelin regeneration, the transcription factor myelin
regulatory factor (Myrf) is essential for OPC differentiation and
myelin protein expression31,32. Nevertheless, the role of MYRF
has not been elucidated after SCI, nor whether PDGFRα+OPCs
constitute an indispensable source of remyelinating
oligodendrocytes.

The functional relevance of oligodendrocyte remyelination after
SCI is also unclear. Remyelination in the spinal cord is correlated
with improvements in locomotion following chemical demyelina-
tion and after the consumption of an irradiated diet33,34. Trans-
plantation of cells capable of forming new oligodendrocytes after
SCI is coupled with functional improvements when the overall
extent of remyelination is increased35–38. Endogenous myelin
regeneration is an efficient process after SCI, as indicated by the
presence of numerous thinly myelinated axons10,13,39, shorter
internodes9,24,40, and by fluorescently labeling new myelin in
transgenic mice22,26. Given the extent of endogenous oligoden-
drocyte remyelination, it is plausible that remyelination contributes
to the limited level of locomotor recovery after SCI. However, axons
are capable of conducting through short segments of demyelination
in vivo41, and the extent of demyelination among intact axons may
not be sufficient to contribute to detectable functional decline.
Despite this, myelin regeneration is the mechanistic basis of several
ongoing clinical trials and has become an important16,19, yet con-
tentious17,18,42 therapeutic target.

To ascertain the role of oligodendrocyte myelin regeneration in
locomotor recovery, we used transgenic mice, which permit the
selective ablation of oligodendrocyte remyelination. Oligodendrocyte
remyelination requires the differentiation of OPCs into new oligo-
dendrocytes43,44, so we deleted Myrf, crucial for OPC differentia-
tion31,32, prior to moderate thoracic spinal cord contusion injury in
mice. We find that MYRF is essential for both the accumulation of
new oligodendrocytes and for remyelination. Schwann cell myeli-
nation is not altered by Myrf deletion from PDGFRα+ cells, nor
does the extent of Schwann cell myelination increase to compensate
for a failure of oligodendrocyte remyelination. This demonstrates that
effective remyelination requires local PDGFRα+ progenitors to dif-
ferentiate and express MYRF after SCI to generate new

oligodendrocytes. Surprisingly, the recovery of hindlimb motor
function assessed on open field testing, the horizontal ladder
and Catwalk gait analysis is unaltered by the deletion of Myrf from
OPCs. Further, by labeling new myelin, we demonstrate that nearly
all new oligodendrocyte myelin forms after the initial recovery of
hindlimb stepping in mice with functional MYRF. These data
indicate that while spontaneous oligodendrocyte remyelination
is extensive following SCI, it is not associated with improvements
in hindlimb motor function during spontaneous recovery in this
model.

Results
Effective recombination in OPCs after SCI inMyrf ICKO mice.
The cellular mechanisms that drive locomotor improvements
following SCI are poorly understood. Genetic fate mapping
reveals extensive remyelination by resident OPCs differentiating
into new oligodendrocytes in response to SCI26, however, the
extent to which oligodendrocyte remyelination contributes to
spontaneous motor improvements is unknown. Removing a gene,
like Myrf, essential for OPC differentiation should halt remyeli-
nation in response to SCI31. This would enable an assessment of
the role of endogenous oligodendrocyte remyelination in func-
tional improvements. We crossed mice carrying LoxP sites
flanking both copies of exon 8 (homozygous) of the Myrf gene
(Myrffl/fl) with mice expressing a tamoxifen-inducible Cre
recombinase under the PDGFRα reporter to produce Myrffl/fl

PDGFRα-CreERT2 mice (Myrf ICKO). When tamoxifen is
administered, recombination occurs in PDGFRα+OPCs,
resulting in excision of exon 8 of the Myrf gene in Myrf ICKO
mice (Fig. 1a), thereby rendering this critical transcription factor
nonfunctional31,32,45. Control mice were littermate Myrffl/fl mice
which lacked PDGFRα-CreERT2, so when tamoxifen is admi-
nistered exon 8 is not removed and the gene remains functional
(Fig. 1a). Adult mice were pretrained on behavioral tasks then
dosed with tamoxifen prior to injury (Fig. 1b). Mice were injured
with a moderate contusive injury known to induce demyelination
of spared axons9,13,27. Like most human injuries, moderate con-
tusions have axon sparing and demonstrate limited locomotor
improvement. There were no differences in injury force or dis-
placement applied by the infinite horizon (IH) impactor between
Myrf ICKO and controls (Fig. 1c, d).

We examined the effectivess of tamoxifen to induce recombi-
nation in the spinal cord of both Myrfwt/wt and Myrffl/fl mice
heterozygous for the PDGFRα-CreERT2 and the Rosa26 mGFP
(mT/mG) transgenes after injury. These mice expressed mem-
brane tethered fluorescence in response to Cre-mediated
recombination, permitting morphological and phenotypical
assessment of these recombined cells (Fig. 1e). Recombination
within OPCs (defined as OLIG2+ PDGFRα+ double-positive
cells) at 6 weeks postinjury (WPI) resulted in mGFP expression in
88.3 ± (standard error of the mean) 2.9% of control and 89.4 ±
1.6% of Myrf ICKO mice OPCs (Fig. 1g). Thus, recombination
was highly effective and labeled the majority of OPCs. As OPCs
differentiate during remyelination they begin to express MYRF31.
Accordingly, we found that MYRF was expressed only in CC1+
OLIG2+ oligodendrocytes and was not expressed in oligoden-
drocyte lineage cells which had not differentiated (OLIG2+ CC1-
negative) (Fig. 1h). EdU (5-ethynyl-2′-deoxyuridine) was admi-
nistered after SCI and effectively labels proliferative cells
including OPCs and can be used to distinguish newly
differentiated oligodendrocytes46. In Myrf ICKO mice, MYRF
was nearly absent from new oligodendrocytes labeled with CC1+
and EdU, in contrast to controls where EdU+ nuclei was
observed in MYRF+ CC1+ cells (Fig. 1i). Myrf deletion from
OPCs did not alter the extent of spared tissue indicated by glial
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fibrillary acidic protein (GFAP) staining (Fig. 1j) at any point
examined between 800 µm rostral to caudal of lesion epicenter
following thoracic SCI (Fig. 1k). Collectively, these data
demonstrated that Myrf ICKO mice can be used to effectively
induce recombination in OPCs, thereby reducing MYRF

expression in new oligodendrocytes in response to SCI, but did
not alter injury dynamics or tissue sparing.

Myrf is required for oligodendrocyte accumulation after SCI.
We next determined if Myrf ICKO was effective at inhibiting the
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accumulation of new oligodendrocytes in response to SCI. Oli-
godendrocyte lineage cells (OLIG2+) were typically not found
within the lesion, but present in the spared white matter (Fig. 2a,
b). To identify new oligodendrocytes, we examined EdU
expression in OLIG2+ CC1+ cells. (Fig. 2c, d). There was over an
11-fold reduction in new oligodendrocytes (EdU+ CC1+ OLIG2
+) in Myrf ICKO mice compared to the controls (1286 ± 250 to
14,315 ± 1308 mm3), indicating that Myrf ICKO almost com-
pletely prevented the accumulation of new oligodendrocytes fol-
lowing SCI (Fig. 2e). Myrf ICKO mice also had fewer total
oligodendrocytes (CC1+ OLIG2+) than control mice, with a
mean of 14,760 ± 2233 cells mm−3 in Myrf ICKO mice compared
to 34,034 ± 2585 cells mm−3 in control mice (Fig. 2e). Addition-
ally, the mean difference in total oligodendrocyte densities
(19,274 cells mm−3) was mostly accounted for by the lack of new
oligodendrogenesis in Myrf ICKO, as nearly this many EdU+
oligodendrocytes (14,315 ± 1308 cells mm−3) were produced in
WT mice after SCI. Myrf ICKO was successful at preventing the
accumulation of new oligodendrocytes at all distances examined
from lesion epicenter (Fig. 2f). OPC density (PDGFRα+ OLIG2
+) did not differ between Myrf ICKO and controls, nor did the
density of OPCs which have proliferated (EdU+ PDGFRα+
OLIG2+) (Fig. 2g). Therefore, MYRF is not required for the
proliferation or recruitment of OPCs after SCI but inhibits the
accruement of new oligodendrocytes.

Myrf ICKO prevents oligodendrocyte remyelination. We next
determined whether Myrf knockout from resident OPCs was
sufficient to halt new myelination in response to SCI. Six weeks
after a moderate thoracic contusion injury, there was sparing of
some ventrolateral white matter at the lesion epicenter (Fig. 1j, k),
which contains both undamaged and regenerated myelin. To
unequivocally differentiate newly generated myelin from surviv-
ing myelin, we crossed Myrf ICKO mice with Rosa26mGFP (mT/
mG) mice. When administered tamoxifen, OPCs with active Cre
recombinase express a membrane-anchored GFP that can be
visualized within new myelin produced by oligodendrocytes
which have differentiated from OPCs (Fig. 3a, b)24,26,31,44. By six
WPI, in the ventrolateral white matter, control mice had new
myelin sheaths, which were indicated by GFP+ colabeling within
MBP+ sheaths around NF-200/SMI312 positive axons (Fig. 3c,
e). Conversely, in Myrf ICKO mT/mG mice, GFP processes
wrapped axons, but were almost always negative for MBP
(Fig. 3d, f). After 6 weeks, the Myrf ICKO mice had generated
only 248 ± 56 new myelin sheaths mm−2 in contrast to control

mice which had 4664 ± 674 sheaths mm−2 (Fig. 3g). Overall,
1.7 ± 0.4% of the myelinated axons at the lesion epicenter in Myrf
ICKO had new myelin as compared to 28.4 ± 3.0% in control
mice (Fig. 3h). There was also a small population of axons that
were wrapped by GFP+ processes, but did not express MBP in
both control and Myrf ICKO mice and this may represent an
early stage of axon ensheathment by oligodendrocyte lineage cells
(Fig. 3d, f) and did not differ between groups (Fig. 3i). At two
WPI, there were very few GFP+ processes that colabeled with
MBP+myelin sheaths in both control (Fig. 3j) and Myrf ICKO
mice (Fig. 3k) indicating little remyelination occurred in the first
two WPI (Fig. 3g). In control mice, there is a higher density of
myelin sheaths at six WPI when compared to two WPI animals (F
(1, 18)= 55.07 two-way repeated measures ANOVA, P < 0.001;
two WPI vs. six WPI: P < 0.001 Tukey’s post hoc test) demon-
strating considerable myelinogenesis during that time. Taken
together, endogenous oligodendrocyte remyelination after SCI
occurs largely after two WPI and this was almost completely
prevented by removing Myrf from OPCs.

Schwann cell myelination is unaltered by Myrf ICKO after SCI.
The majority of new (GFP+) myelin sheaths in Myrf ICKO mice
were found in the dorsal column, a location of extensive Schwann
cell myelination following dorsal SCI26,27. Given that MBP is not
only expressed in oligodendrocyte myelin but also Schwann cell
myelin47, we determined whether the new myelin produced in
Myrf ICKO mice were derived from Schwann cells. The myelin
protein zero (P0) is a Schwann cell-specific myelin marker and
can be used to distinguish Schwann cell myelin from oligoden-
drocyte myelin26,27. At both two and six WPI, axons were
wrapped by P0+ myelin in both controls and Myrf ICKO mice,
some of which was produced by recombined cells (mGFP+)
(Fig. 4a). The presence of GFP+ P0+ myelin supports our pre-
vious findings that PDGFRα+ cells produce Schwann cells after
SCI26. Using higher magnification confocal microcroscopy, we
find clear colabeling of P0 with GFP in the dorsal column in
control (Fig. 4b) and Myrf ICKO mice (Fig. 4d), but only rare P0
+ sheaths in the ventralolateral white matter of the spinal cord in
either group (Fig. 4c, e).Myrf ICKO mice had no difference in the
density of P0+ Schwann cell myelin relative to controls at two or
six WPI (Fig. 4f). Similarly, the density of PDGFRα-derived
Schwann cell myelin (GFP+ P0+) was not different in Myrf
ICKO mice relative to control mice at two or six WPI (Fig. 4g),
nor was the percentage of P0+ myelinated axons derived
from PDGFRα+ cells (two WPI: 17.5% ± 4.0% for controls,

Fig. 1 Myrf ICKO mice have effective recombination in OPCs following moderate thoracic SCI. a Illustration of transgenes used in this experiment. Myrf
ICKO mice were generated by crossing mice with exon 8 of Myrf floxed with mice with the PDGFRα-CreERT2 transgene to produce Myrffl/fl PDGFRα-
CreERT2 mice. Control mice lacked the PDGFRα-CreERT2 transgene. b Illustration of experimental timeline. c Impact force (kilodynes) imparted on the
spinal cord during SCI indicates no difference between groups (df= 25, t= 0.103, P= 0.912, Student’s t test). d Displacement (µm) of the impactor tip
upon contact with the spinal cord during thoracic contusion shows no statistical difference between groups (df= 25, t= 0.037, P= 0.971, Student’s t test).
e Overview images from the ventrolateral white matter adjacent to the lesion epicenter in control and Myrf ICKO mice crossed with a tamoxifen inducible
reporter that tethers GFP to the membrane (mT/mG). The majority of PDGFRα+OLIG2+ cells are recombined (GFP expression, yellow arrows), but
occasional nonrecombined PDGFRα+ cells are observed (PDGFRα+GFP−, blue arrows). f Inlays of single optical sections demonstrating colabeling of
PDGFRα with GFP in OLIG2+ cells. g Quantification of the recombination efficiency in OPCs at six WPI. There is no difference in recombination between
control and Myrf ICKO mice (df= 10, t= 0.368, P= 0.627, Student’s t test). h Single optical confocal section micrographs demonstrating colabeling of
MYRF in CC1+OLIG2+ oligodendrocytes (yellow arrows). OLIG2+ cells lacking CC1 do not have MYRF expression in either group (blue arrows). i Single
optical section from control or Myrf ICKO mice demonstrating colabeling of MYRF in CC1+ EdU+ oligodendrocytes (blue arrows) in control mice, but not
in CC1+ EdU+ oligodendrocytes in Myrf ICKO mice (white arrows). j Spinal cord cross-section of the lesion epicenter stained for GFAP at six weeks post
injury (WPI) in Myrf ICKO and control mice. k Quantification of GFAP+ spared tissue at different distances from lesion epicenter. There is no significant
difference betweenMyrf ICKO and control mice at any given distance from lesion epicenter (multiple Student’s t test with Holm-Šídák correction, epicenter
t= 1.095, P= 0.291) ns non-significant. Scalebars= 50 µm (e), 10 µm (h), 5 µm (i), 100 µm (j) . Error bars are mean ± SEM
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13.6% ± 5.1% for Myrf ICKO at six WPI: 23.8% ± 9.9% for con-
trols, 20.5% ± 3.0% for Myrf ICKO) (Fig. 4h), demonstrating that
MYRF was not required for Schwann cell myelination from
PDGFRα+ cells. While we previously found the majority of
Schwann cells were PDGFRα+ cell derived, the percentage of
PDGFRα-derived Schwann cell myelin increases over time and
the quantification in this study was undertaken at an earlier time
point than previous studies26. InMyrf ICKO mice by six WPI, the

total density of myelin produced by recombined cells (GFP+
MBP+, 248 ± 56 sheathes mm−2) (Fig. 3d) could be almost
entirely accounted for by the amount of Schwann cell myelination
(GFP+ P0+, 240 ± 39 myelin sheathes mm−2) (Fig. 4f). There-
fore, MYRF is dispensable for Schwann cell myelination in the
central nervous system (CNS) after SCI and impairing oligo-
dendrocyte remyelination does not cause a compensatory
increase in Schwann cell myelination.
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there is no statistical difference between Myrf ICKO and controls (total OPC density: df= 15, t= 1.535, P= 0.146; proliferative OPC density: df= 15, t=
1.267, P= 0.225, Student’s t tests). **P≤ 0.01 ***P≤ 0.001. Scale bars= 100 µm (a, b), 20 µm (c, d). Error bars are mean ± SEM
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Myrf ICKO results in chronic demyelination after SCI. Typi-
cally, remyelination is efficient in rodents with little evidence of
chronic demyelination after SCI9,40. Genetic fate mapping
revealed that recombined cells in Myrf ICKO mice are nearly
unable to produce new oligodendrocyte myelin following SCI,

suggesting persistent demyelination may be present. However, de
novo myelination does not require overt demyelination46, nor
does it reveal differences in the total level of myelination between
groups. We visualized resin-embedded sections at the lesion
epicenter ofMyrf ICKO and control mice to determine the degree
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of myelination. Following staining with Toluidine blue, the core
of the lesion was filled with phagocytes and nearly devoid of
myelinated axons at six WPI in both groups (Fig. 5a). However,
in the spared ventrolateral white matter, an increasing gradient of
myelinated axons radiated outwards from the lesion epicenter to
the most lateral portions of the white matter (Fig. 5b). The area of
spared tissue within the ventralateral white matter at the lesion
epicenter was the same in each group (control 0.398 ± 0.056 vs.
Myrf ICKO 0.396 ± 0.039 mm2, df= 8, t= 0.028, P= 0.978 Stu-
dent’s t test). Control mice had 27,239 ± 4587 myelinated axons
relative to 15,200 ± 1616 myelinated axons in Myrf ICKO mice
consistent with an impaired capacity to form new oligoden-
drocyte myelin (Fig. 5c). This reveals that Myrf ICKO mice had a
nearly 44% decline in the number of myelinated axons suggests
that upwards of 12,000 axons are typically remyelinated by oli-
godendrocytes within the ventrolateral white matter of mice with
functional Myrf after moderate contusive SCI. Electron micro-
graphs of the lesion epicenter of Myrf ICKO and control mice
demonstrated few thinly myelinated axons, and the presence of
many unmyelinated axons inMyrf ICKO (Fig. 5d). Quantification
of the thickness of myelin relative to axon diameter revealed a
shift in the distribution toward more thinly myelinated fibers in
controls relative to Myrf ICKO’s (Fig. 5e, f). G-ratios greater than
0.85 are rarely found in the uninjured rodent spinal cord13. The
high frequency of axons with g-ratio > 0.85 in controls is likely
indicative of the presence of oligodendrocyte remyelination
(Fig. 5e). Lastly, there was an increase in the number of axons
>1 µm in diameter that lacked myelin (1298 ± 327 axons in
controls relative to 8336 ± 1072 axons in Myrf ICKO) indicative
of profound chronic demyelination (Fig. 5g). Together, these data
demonstrate that Myrf ICKO was effective at reducing remyeli-
nation chronically after SCI, whereas in the presence of Myrf
there was extensive remyelination of spared axons.

Motor recovery when oligodendrocyte remyelination is
blocked. Given the large amount of oligodendrogenesis and
remyelination that occurred in control mice after moderate
thoracic SCI, we wanted to understand if oligodendrocyte
remyelination was causative in locomotor recovery. In contrast to
mice with functional MYRF, Myrf ICKO mice were almost
completely unable to produce new oligodendrocyte myelin
resulting in profound chronic demyelination of spared axons at
the lesion epicenter. Thus,Myrf ICKO mice provide the necessary
contrast to understand the contribution of oligodendrocyte
remyelination to locomotor recovery. To our surprise, we found
that impaired remyelination in Myrf ICKO mice was not asso-
ciated with a difference in functional recovery using open field

testing at any time point following SCI (Fig. 6a, b). Both Myrf
ICKO and controls plateaued with locomotor scores of between
five and a six on the BMS by six WPI, indicative of the recovery of
plantar hindlimb stepping but with impairments in coordination
and trunk stability. We also measured fine differences in loco-
motion using a regular horizontal ladder task, which is known to
have higher discriminative capacity for mice with a BMS score
from 5 to 7 than the BMS alone48. Both controls and Myrf ICKO
mice showed an increased number of errors after injury on the
horizontal ladder, however again, there was no difference between
either group at any time point examined (Fig. 6c).

Mice also underwent footprint analysis using the Catwalk
apparatus, which quantifies numerous aspects of gait and is
capable of detecting subtle differences in locomotion49 (Fig. 6d–f).
The base of support, stride length, relative paw position, duty
cycle and the percentage of time individual paws were on the
platform were analyzed. These are outcome measures sensitive to
motor dysfunction following SCI50. In control mice and Myrf
ICKO, injury induced profound impairments in stride length
(Fig. 6g), base of support (Fig. 6h), and an increase in relative
bilateral paw position (Fig. 6i), but did not alter hindlimb duty
cycle in mice (time standing/time standing+ time in swing)
(Fig. 6j). After injury, there was also a decrease in the duration of
time a mouse had one or two paws placed on the walkway
(Fig. 6k) and an increase in the time in which three or four paws
were simultaneously in contact with the walkway (Fig. 6l).
However, we did not find at any time point a difference between
between Myrf ICKO and controls on any of these or other
parameters. These same analyses were run on an additional
cohort of Myrf ICKO and control mice with the same protocol
(Supplementary Fig. 1) and again, we found no difference in
hindlimb locomotion between Myrf ICKO and controls using
open field testing (Supplementary Fig. 1a, b), the horizontal
ladder (Supplementary Fig. 1c) and on the Catwalk (Supplemen-
tary Fig. 1d–i). Combining, these separate cohorts did not result
in differences between controls and Myrf ICKO following SCI on
the BMS (Supplementary Fig. 2a), BMS subscore (Supplementary
Fig. 2b), or horizontal ladder (Supplementary Fig. 2c). Impor-
tantly, when the rate of oligodendrocyte remyelination is
compared to locomotor improvements, we find the majority of
hindlimb recovery following moderate thoracic SCI occurs during
the first two weeks, when little oligodendrocyte remyelination is
present in mice (Fig. 3g relative to Fig. 6a, and summarized in
Fig. 7a, b). Collectively, these data demonstrate that the
initial recovery of hindlimb locomotion transpires independently
of oligodendrocyte remyelination following thoracic contusive
SCI.

Fig. 3Myrf ICKO blocks nearly all oligodendrocyte remyelination in recombined cells after SCI. a Illustration of transgenic mice used.Myrf ICKO and control
mice were crossed with a mouse line that has a Rosa26mGFP (mT/mG) membrane-tethered GFP reporter that is Cre inducible. b Overview of injury
epicenter at six WPI showing MBP, GFP, and NF200/SMI312 labeling. Representative areas from boxes are shown at higher magnification in c, d. c Single
optical confocal sections stained with GFP for recombined cells, MBP to label myelin and NF-200/SMI312 to label axons in control mice.
e Photomicrograph of individual oligodendrocyte processes wrapping around NF-200/SMI312+ axons and colabeling with MBP in control mice (yellow
arrows). d In Myrf ICKO mice, there are few MBP+ GFP+ sheaths in the ventrolateral white matter. f Myrf ICKO mice have processes that wrap NF-200/
SMI312+ but these processes typically do not express MBP (blue arrow). g Quantification of the density of newly generated myelin sheaths (mGFP+ MBP
+ around NF200/SMI312+ axons) in spared tissue at two and six WPI. Control mice and Myrf ICKO animals do not differ at two WPI in their newly
generated myelin sheath densities, but at six WPI control mice have a higher density of newly generated myelin sheaths compared toMyrf ICKO mice (F(1,
18)= 37.77 two-way repeated measures ANOVA, P < 0.001; two WPI Myrf ICKO vs. Control: P= 0.812 six WPI Myrf ICKO vs. Control: P < 0.001 Tukey’s
post hoc test). h Quantification of the percentage of MBP+ sheaths around axons that are GFP+ (new myelin) at six WPI at the lesion epicenter. There are
more new myelin sheaths in control mice relative to Myrf ICKO (df= 10, t= 10.69, P < 0.001, Student’s t test). i Quantification of GFP+ processes, which
completely wrap axons but fail to express detectable MBP and likely represent ensheathment by oligodendrocyte lineage cells reveals no statistical
differences at six WPI (df= 10, t= 1.665, P= 0.127, Student’s t test). j, k The ventrolateral white matter at two WPI showing few GFP+ MBP+ myelin
sheaths in both control animals and Myrf ICKO mice. ***P≤ 0.001, ns non-significant. Scale bar= 100 µm (b) and 10 µm (c, d, j, k). Error bars are mean ±
SEM
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Discussion
Myelin regeneration is considered a key therapeutic target to
enhance function following SCI, but the transcriptional control
and functional relevance of this process are unknown. We used a
loss-of-function approach to ascertain the role of endogenous

oligodendrocyte remyelination in locomotor improvements fol-
lowing SCI. By removing Myrf from PDGFRα+ OPCs, the
accumulation of new oligodendrocytes was largely inhibited,
while OPC proliferation and recruitment in response to SCI were
preserved. Myrf ICKO blocked oligodendrocyte remyelination
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which colabel with GFP. There are typically very few P0+ sheaths in either the ventral white matter of control or Myrf ICKO mice. f Quantification of the
total density of P0 myelin sheaths (P0+) demonstrates there is no difference between groups at two WPI (df= 8, t= 0.128, P= 0.901, Student’s t test) or
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from recombined cells, resulting in a 44% decline in the number
of myelinated axons at the lesion epicenter in Myrf ICKO mice.
Surprisingly, despite chronic demyelination, knockout of Myrf
from OPCs did not alter the amount or rate of hindlimb motor
recovery in this model. Further, by genetically fate mapping new

myelin formation we demonstrated that the vast majority of
oligodendrocyte remyelination occurs after the recovery of hin-
dlimb stepping. Therefore, oligodendrocyte remyelination is not a
crucial component to recovery of hindlimb stepping following
moderate thoracic SCI in mice.
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We demonstrate the expression of MYRF in PDGFRα+ cell-
derived oligodendrocytes is essential for effective remyelination of
the spinal cord following traumatic injury. Myrf deletion from
OPCs did not affect OPC recruitment or proliferation. Micro-
array and immunohistochemical stains demonstrate that MYRF
is not typically expressed in OPCs31,32, so it is not surprising their
density or proliferation is not altered after SCI. Emerging evi-
dence suggests OPCs may be crucial for mediating inflamma-
tion51 and may entrap dystrophic axon tips within the glial scar52,
so altering OPC numbers would confound an interpretation of
the role of oligodendrocyte remyelination in locomotor recovery.
Reduced oligodendrogenesis in Myrf ICKO mice were likely a
result of a failure of OPCs to fully differentiate/mature and
subsequently being more vulnerable to apoptosis31. Oligoden-
drogenesis by resident PDGFRα+ OPCs cannot be compensated
for by other cell sources like ependymal cells or Schwann cells,
even when resident OPC differentiation is blocked following SCI.
Therefore, PDGFRα+ progenitors have an essential role in the
generation of new oligodendrocyte myelin after SCI, analogous to
their role in chemical demyelination53. Blocking the accumula-
tion of new oligodendrocytes reveals a large number of axons at
the lesion epicenter (~12,000) are normally receptive to oligo-
dendrocyte remyelination after moderate thoracic SCI consistent
with extensive early demyelination8,9. However, when mice have
functional Myrf, most of these axons are remyelinated by six
weeks post-SCI. Therefore, we demonstrate that PDGFRα+
OPCs require MYRF expression upon differentiation and have an
indispensable role in generating new oligodendrocytes to
remyelinate after SCI.

Given the high level of endogenous remyelination that occurs
following SCI, it is surprising that hindlimb motor recovery is not
affected when oligodendrocyte remyelination is ablated. One
possibility is that myelin formed in response to SCI fails to restore
conduction. While we cannot directly discount this possibility,
the increased conduction velocity seen with the onset of remye-
lination at 2 weeks13, and computer modeling indicating very thin
myelin is sufficient to improve conduction54 argues against such
conduction failure. In cats fed an irradiated diet during gestation
myelin vacuolation and severe demyelination are observed34.
When these cats are returned to a normal diet they generated thin
myelin that is restorative for function34, indicating that thinly
remyelinated axons in the spinal cord are functional, at least in
this case. A second, and in our view more plausible alternative, is
the limited rostral–caudal extent of demyelination along axons
may not be sufficient to block conduction long-term. Segmentally
demyelinated spinal cord axons can conduct in vivo through
demyelinated lengths of at least 2.5 mm41, and following SCI,
demyelination of spared axons has been shown to be reasonably
focal to the lesion epicenter40. Labeling of descending rubrospinal
tract axons after contusion injury indicates that 80% of the
abnormally short internodes (<100 µm), suggestive of new adult-

generated myelin, are found within 1 mm rostral and caudal of
the lesion40. Conduction can be restored in demyelinated axons
by the redistribution of sodium channels along the demyelinated
axolemma55, a process that may take time, but could explain the
partial restoration of conductance at one and two WPI prior to
extensive oligodendrocyte remyelination13. Thus, perhaps over
short distances of demyelination like those observed in rodent
SCI, remyelination is not required to activate residual neural
circuitry.

Locomotor recovery following incomplete SCI relies on the
reorganization of descending circuits to deprived spinal seg-
ments56,57, and to changes in cellular and circuit properties
within the central pattern generator58,59, and motor neurons60

below the level of injury. In cervical models of SCI, very few
corticospinal neurons can mediate forelimb motor improve-
ments5,61, and sparing of less than 20% of the ventrolateral
funiculus is associated with locomotor recovery following thor-
acic SCI62,63. As such, relatively few descending circuits may be
necessary to reestablish the excitatory input required for loco-
motor recovery5,62,63. Given this, remyelination of descending
axons may not be functionally relevant except in cases where very
few axons persist62, or more sustained/extensive demyelination is
observed.

Schwann cell myelination was observed within the first 2 weeks
following SCI when the majority of locomotor recovery occurs.
Schwann cell myelin within the CNS is sufficient to improve
conductance following CNS demyelination64, and transplantation
of Schwann cells into the injured spinal cord has been reported to
confer functional benefits42. Consistent with the possibility of
Schwann cells potentially driving a portion of recovery is a recent
study demonstating that the inducible knockout of neuregulin-1,
which prevents Schwann cell myelination following moderate
thoracic SCI, is correlated with diminished functional locomotor
recovery27. Importantly, we found Schwann cell myelination, in
contrast to oligodendrocyte remyelination, occurs early enough
after injury to potentially mediate recovery. However, determin-
ing the role of Schwann cell myelination during recovery fol-
lowing SCI still requires future cell-specific knockout
experiments.

Interestingly, the ablation of oligodendrocyte remyelination did
not induce a compensatory increase in Schwann cell myelination,
which was still primarily confined to the dorsal column. This
raises the intriguing possibility, that the injury environment
leaves different CNS axon populations selectively permissible to
either Schwann cell or oligodendrocyte remyelination following
SCI. The size of the axon24, and the proximity to peripheral
roots65 may be factors contributing to Schwann cell generation
from OPCs, but astrocytes seem to have the prominent role in
regulating the level of Schwann cell myelination66,67. Schwann
cell myelination is confined to areas depleted of astrocytes after
SCI66, and STAT3-mediated reactive astrogliosis restricts

Fig. 5 Chronic demyelination of spared axons in Myrf ICKO six weeks following SCI. a Whole cross sections of control and Myrf ICKO spinal cords at lesion
epicenter stained with Toluidine blue at six WPI. The majority of myelin is found in the ventrolateral white matter. b High magnification images of box inset
from a in Myrf ICKO and control animals. c Quantification of myelinated axons in the spared white matter. Myrf ICKO animals have significantly fewer
myelinated axons when compared to control animals (df= 8, t= 2.475, P= 0.038, Student’s t test). d Example transmission electron micrographs of the
injured mouse lesion epicenters. Blue shading depicts thinly myelinated axons, pink shading depicts axons devoid of myelin, and green shading depicts
axons with thick myelin sheaths. Many thinly myelinated axons are found in control mice whereas Myrf ICKO mice are almost completely devoid of thinly
myelinated large caliber axons, and instead have demyelinated axons greater than 1 µm in size at six WPI. e Frequency distribution of g-ratios of myelinated
axons indicate a shift towards higher g-ratios (more thinly myelinated axons) in the controls relative to Myrf ICKO (P < 0.001, Kolmogorov–Smirnov test).
f Scatter plot comparing g-ratio to axon diameter of axons quantified in the spared white matter of injured animals demonstrating a difference between
controls and Myrf ICKO (F= 25, DFn= 1, DFd= 1340, P < 0.0001, linear regression). Dashed box highlights axons that lack myelin. g Quantification
showing more unmyelinated axons larger than 1 µm in the spared white matter ofMyrf ICKO compared to controls at six WPI (df= 6, t= 4.858, P= 0.003,
Student’s t-test). *P≤ 0.05, **P≤ 0.01 Scale bars= 100 µm (a), 5 µm (b), 1 µm (f). Error bars are mean ± SEM
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Schwann cell myelination following demyelination67. The
knockout of Myrf from OPCs does not alter astrocyte coverage in
the injured spinal cord, which may have restricted a compensa-
tory increase in Schwann cell myelination.

Remyelination has been considered a promising target for
SCI16–19. Oligodendrocyte remyelination is extensive by six WPI,

but nearly absent at two WPI when hindlimb stepping has
typically recovered following moderate thoracic SCI. It is con-
ceivable that an acceleration of oligodendrocyte remyelination
within the first 2 weeks after SCI could speed or increase the
extent of locomotor recovery. In accordance, cell transplants
targeting remyelination injected within the first 2 weeks were
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associated with more remyelination and improved locomotor
recovery whereas more chronic transplants did not alter remye-
lination or subsequent locomotor recovery35,37. However, both
the time course of oligodendrocyte remyelination, and the
unimpaired recovery relative to control mice in the absence of
oligodendrocyte remyelination question both the role of oligo-
dendrocyte remyelination in this model to drive recovery and the
viability of this model to test remyelinating therapies. Ultimately,
this study raises doubts whether remyelination is a validated
target for clinical translation following moderate spinal cord
contusion.

Methods
Transgenic mice. Procedures involving live animals were approved by the Uni-
versity of British Columbia, in accordance with guidelines from the Canadian
Council on Animal Care (A13-0328). Experiments were initiated in 8–10-week old
mice that were group housed, fed a standard chow ad libitum and maintained on a
12 h reverse dark/light cycle for the experiment. Mice from the parental Myrffl/fl

line (Jackson Laboratory stock # 010607)32, which express LoxP sites around both
copies of exon 8 of Myrf (homozygous), were crossed with PDGFRα-CreERT244

(Jackson Laboratory stock # 018280) mice. Offspring from the F1 generation with
the PDGFRα-CreERT2 transgene and heterozygous for the presence of LoxP sites
around Myrf (Myrffl/wt) were crossed with F1 Myrffl/wt mice lacking the PDGFRα-
CreERT2 transgene. F2 generation Myrffl/fl PDGFRα-CreERT2 and Myrffl/fl mice
lacking the Cre transgene were then bred to produce sufficient mice for the
experiments. This breeding strategy yielded litters in which all mice had both
copies of Myrf surrounded by LoxP sites (Myrffl/fl) with individual mice either
without (control mice) or with the PDGFRα-CreERT2 transgene (Myrf ICKO). All
Myrf ICKO mice used were heterozygous for PDGFRα-CreERT2. Mice were on a
mixed strain background comprised of C57bl/6 and SJL. Exon 8 of Myrf contains
the putative DNA binding domain and its deletion results in a truncated, non-
functional protein31,32,45. All animals, unless stated otherwise, were treated with
tamoxifen to ensure no confounding effects of the drug on either recovery from
SCI, or remyelination efficiency. The insertion of the PDGFRα-CreERT2 transgene
does not affect recovery following contusive SCI relative to Myrffl/fl lacking the
PDGFRα-CreERT2 in the absence of tamoxifen (Supplementary Fig. 3).

To determine the extent of new myelin produced by OPCs, Myrffl/fl PDGFRα-
CreERT2 or Myrfwt/wt PDGFRα-CreERT2 mice were crossed with Rosa26-mGFP
(mT/mG) mice (JAX # 007576)68, which induces GFP expression that is tethered to
the membrane following tamoxifen induced Cre-mediated recombination (mGFP).
Myrf ICKO and control mice were heterozygous for the mT/mG and PDGFRα-
CreERT2 transgenes in genetic fate mapping experiments. A total of n= 23 mice
were used in the study and n= 1 animal died during surgery bringing the total
animals to n= 12 perfused at six WPI and n= 10 perfused 2-week postinjury.
Genotyping was performed on ear clippings and DNA was extracted using the
REDExtract-N-AMP Tissue Kit (Sigma, St. Louis, MO, R4775) and amplified with
primers specific for the transgenes32,44,68. Genotypes were visualized before and
after the experiment by running PCR solutions on a 1.5% agarose (Invitrogen,
Carlsbad, CA, 16500) gel. Primer sequences were:

Myrf forward: AGGAGTGGTGTGGGAAGTGG
Myrf reverse: CCCAGGCTGAAGATGGAATA
PDGFRα CreERT2 forward: TCAGCCTTAAGCTGGGACAT
PDGFRα CreERT2 reverse: ATGTTTAGCTGGCCCAAATG
Rosa26-mGFP (mT/mG) common forward: CTCTGCTGCCTCCTGGCTTCT
Rosa26-mGFP (mT/mG) wildtype reverse: CGAGGCGGATCACAAGCAATA
Rosa26-mGFP (mT/mG) mutant reverse: TCAATGGGCGGGGGTCGTT

Experimental design. A total of n= 76 mice were used in two cohorts. The larger
cohort was used for histological analysis, and behavioral scores were reported for
this cohort in the results. Cohorts were not combined as injuries were done on two
different IH impactors, and resulted in slightly different levels of recovery between
the control groups beginning three WPI until six WPI (F (1, 21)= 9.850, two-way
repeated measures ANOVA, P= 0.005). Behavioral data from the second cohort
was reported in Supplementary Fig. 1, and combined data in Supplementary Fig. 2.
Group sizes were determined prior to experiment by conducting a power analysis
from data generated in a pilot experiment with mice on the same genetic back-
ground to determine the group size which is required to detect a 1 BMS difference
(n= 14 per group) given the variability in our data (α < 0.05, Power= 0.80). To
ensure we had sufficient power, a total of n= 60 Myrf ICKO and control mice
received spinal cord injuries. Animal grouping was dependent on genotype. An
additional, n= 16 (8 Myrf ICKO and 8 controls, split evenly between males and
females) aged-matched mice without an injury were examined to determine ifMyrf
ICKO was sufficient to induce demyelination or behavioral deficits during this
timeframe without an injury. n= 9 injured animals (n= 4 Myrf ICKO, 5 controls)
were excluded due to subsequent health issues including digit autotomy (1 mouse),
hernia (1 mouse), bladder infections/complications (5 mice), or surgical deaths (2
mice). Additionally, mice were excluded after the experiment if they were statistical
outliers (below lower quartile −1.5× the interquartile range or above the upper
quartile+ 1.5 × interquartile range) on displacement relative to their experimental
grouping (2 mice) or if they demonstrated evidence of plantar stepping immedi-
ately post injury (3 mice) (BMS score ≥ 4), both a priori exclusion criteria. The
remainder of the mice (n= 46) were used in behavioral and histological analyses
and there were n= 23 Myrf ICKO and n= 23 controls, with n= 12 males in the
control group and n= 10 males in the Myrf ICKO group. Mice were perfused for
use in either immunohistochemistical or electron microscopic analysis. Mice used
for electron microscopy were grouped so they did not statistically differ in their
BMS scores from those used for immunohistochemistry.

Spinal cord injury and animal care. Prior to surgery, mice were anaesthetized for
3 min with a 3% isofluorane (Fresenius Kabi, Toronto, Canada, CPO40602) to
oxygen mixture. Anesthesia was maintained at 1.5–2% isofluorane as needed
during surgery. Each animal received 1 ml of Ringer’s solution (Braun, Montreal,
Canada, L7500) and buprenorphine (0.05 mg/kg) (Reckitt-Benckiser Slough, Tor-
onto, Canada) analgesic prior to surgery. The back was shaved and then disinfected
using successive betadine (Purdue Pharma, 41731) and 70% alcohol washes. An
incision and separation of the erector trunci muscles from the spine followed by a
dorsal laminectomy of T9–10 was performed. The vertebral column was stabilized
by clamping the exposed T8 and T10 vertebrae with forceps prior to positioning
the animal under the Infinite Horizons Impactor69 (Precision Systems). The IH
impactor tip was lowered until it just contacted the exposed spinal cord, raised 1
cm, and set to deliver 70 kilodynes of force. Following surgery, the skin and
overlying musculature were sutured with 6-0 nylon sutures (Ethicon, San Lorenzo,
Peurto Rico, 667G) and the mice were placed into a temperature and humidity
controlled incubator at 32 °C until they awoke. Mice were administered bupre-
norphine twice daily for the following 2 days and Ringer’s solution daily for 5 days
or longer if needed. Bladders were also expressed twice daily until spontaneous
micturition was achieved.

Tamoxifen and EdU administration. Tamoxifen was dissolved in corn oil
(Sigma, St. Louis, MO, C8267) at 20 mgml−1 before administration. All
mice received 100 mg kg−1 day−1 intraperitoneal injections of tamoxifen (Sigma,
St. Louis, MO, T5648) beginning 9 days prior to SCI and continuing for 5 con-
secutive days. For the first two days after SCI, 5-ethynyl-2’-deoxyuridine (EdU)
(Invitrogen, Eugene, OR A10044) was dissolved in sterile PBS and administered by
intraperitoneal injection (5 mg kg−1). After two days, EdU (Carbosynth, San Diego,

Fig. 6 Myrf deletion from PDGFRα+ cells does not impair motor recovery following moderate thoracic contusive SCI. a Time course of locomotor function
evaluated by open field BMS. While Myrf ICKO and controls did not differ after SCI (F(3, 39)= 286.0, P < 0.001; injured Myrf ICKO vs. control P= 0.518),
both SCI groups were statistically different from uninjured controls at all time-points postinjury (P < 0.001). b On the BMS subscore, there is no difference
between Myrf ICKO and controls (F(3, 39)= 388.0, P < 0.001; injured Myrf ICKO vs. control P= 0.966). c There is no difference between Myrf ICKO and
controls in the percentage of errors (error/error+ success) on the horizontal ladder after SCI (F(3, 38)= 25.86, P < 0.001, injured Myrf ICKO vs injured
control Tukey’s post hoc P=0.942). d An illustration of paw recordings from the Catwalk along with parameters in g–i used to assess gait. LH left hindlimb;
LF left forelimb; RF right forelimb; RH right hindlimb. e Example of the time course in which a paw is in contact with platform (colored boxes). f Example
recordings of three full step cycles from the Catwalk prior to injury and tamoxifen dosing, at three WPI, and at six WPI. g–l No differences in gait were
observed between Myrf ICKO and controls either with or without an injury on g hindlimb stride length (F(3, 37)= 44.13, P < 0.001; injured Myrf ICKO vs.
injured control P= 0.977). h Hindlimb base of support (F(3, 37)= 48.09, P < 0.001; injured Myrf ICKO vs. injured control P= 0.630). i Combined paw
position (F(3, 37)= 52.74, P < 0.001; injured Myrf ICKO vs. injured control P= 0.983). j Hindlimb duty cycle (F(3, 37)= 0.933, P= 0.435; injured Myrf
ICKO vs. injured control P= 0.738). k Percent of run with one or two paws on the platform (F(3, 37)= 17.47, P < 0.001; injured Myrf ICKO vs injured
control P= 0.651). l Three or four paws on the platform (F(3, 37) 15.46. P < 0.001; injured Myrf ICKO vs. injured control P= 0.934). Groups were
compared at all post injury time points. All statistical comparisons were made using a two-way repeated measures ANOVA, and a Tukey’s post hoc for
individual group differences. Error bars are mean ± SEM
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CA, 61135-33-9) was dissolved in drinking water (0.2 mg ml−1) with 1% D-glucose
to encourage consumption46. EdU water was changed every 2 days and the mice
were administered EdU in their water until four WPI.

Perfusion and tissue processing. To collect spinal cords for immunohisto-
chemical analysis, mice were transcardially perfused with 20 ml of PBS followed by
40 ml of freshly prepared 4% paraformaldehyde (PFA) (Fisher Scientific, Ward
Hill, MA A11313) at two or six WPI. The injury site was identified, then one cm of
the spinal cord flanking the injury was dissected. Spinal cords were fixed in PFA for
8 h, then incubated in ascending sucrose solutions (12, 18, and 24%) at 4 °C. Tissue
was submerged in OCT compound (Tissue-Tek, Torrance, CA 4583) frozen on dry
ice and stored at −80 °C. All spinal cords were sectioned using a cryostat (Thermo
Scientific, Walldorf, Germany, HM-525) into 20 µm thick cross-sections, which
were mounted in series on ten slides making each individual section on a slide
200 µm apart.

Spinal cords were collected for electron microscopy at six WPI. Mice were
transcardially perfused with 20 mL of 0.01 M PBS followed by 40 ml of 4% PFA
with 1% glutaraldehyde chilled to 4 °C (Electron Microscopy Sciences, Hatfield, PA,
16220). The injury site was identified, then segments of the spinal cord were
removed at, and adjacent to, the lesion epicenter. The epicenter and adjacent
sections were dissected into 1 mm blocks and fixed in 2% glutaraldehyde for 2 h
before being washed three times in 0.1 M cacodylate buffer with 5.3 mM CaCl2, and

then incubated with 1% osmium tetroxide (Electron Microscopy Sciences, Hatfield,
PA, 19190) with 1.5% potassium ferrocyanide (BDH, Toronto, Canada) for 1.5 h.
Once fixed, the tissue went through ascending alcohol washes before being washed
with propylene oxide (Electron Microscopy Sciences, Hatfield, PA 20401) and
embedded in Spurr’s resin (Electron Microscopy Sciences, Hatfield, PA 14300).

Immunohistochemistry. To prepare for antibody staining, slides were thawed then
rehydrated in PBS. In order to effectively stain myelin proteins, tissue was put
through ascending, then descending ethanol dilutions (50, 70, 90, 95, 100, 95, 90,
70, 50%), followed by three washes of PBS. Tissue was then blocked with 10%
normal donkey serum dissolved in PBS with 0.1% Triton X-100 for 30 min. Pri-
mary antibodies were diluted in PBS with 0.1% Triton X-100 and applied to the
slides overnight at room temperature in a humid chamber. The following morning,
slides were washed and incubated with donkey Dylight or Alexa Fluor secondary
antibodies (Jackson ImmunoResearch Laboratories, Inc.) for 2 h, then washed
again before being coversliped using Fluoromount-G (Southern Biotech, 0100-01).
Antibodies used were raised against the following antigens: CC1 (1:300, Millipore,
OP80), OLIG2 (1:500, Millipore, AB9610), MYRF (1:300, N-terminus, generously
provided by Dr. Michael Wegner), GFP (1:4000, Abcam, ab13970), GFAP (1:1000,
Sigma, G3893), PDGFRα (1:200, R and D Systems, AF-307-NA), NF200 (1:1000,
Sigma, N0142), SMI312 (1:1000, Covance, SMI-312R-100) and P0 (1:100, Aveslabs,
PZO).
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Fig. 7 New oligodendrocyte and Schwann cell myelination after SCI and its relationship to locomotor recovery. a Schematic of the uninjured and injured
mouse spinal cord two and six WPI following moderate dorsal thoracic contusion. In the uninjured spinal cord, axons are myelinated solely by
oligodendrocytes and peripheral nerves are myelinated by Schwann cells. By two WPI, the lesion epicenter is ringed by a glial scar and mostly devoid of
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Schwann cell myelination is generally confined to the dorsal column. The degree of Schwann cell myelination does not differ in the injured spinal cord
betweenMyrf ICKO and control mice. b Diagram illustrating the relative amount and rate of open field hindlimb motor performance compared to the extent
of oligodendrocyte and Schwann cell myelin after injury in the spinal cord. After thoracic SCI, there is a decline in both hindlimb motor performance and
number of myelinated axons in the CNS. The majority of recovery of hindlimb locomotor function on open field testing occurs within the first two weeks in
both Myrf ICKO and controls. In contrast, the vast majority oligodendrocyte remyelination does not occur until after two weeks postinjury. Therefore, the
relative time course of oligodendrocyte remyelination is not associated with hindlimb motor recovery after SCI. In contrast, Schwann cell myelination
occurs within the first two weeks after SCI and occurs at a relatively steady rate. The height of the lines is approximately proportional to the extent of loss
and subsequent recovery after SCI

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05473-1 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3066 | DOI: 10.1038/s41467-018-05473-1 | www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Cell counting and tissue analysis. All analyses were performed blinded to animal
genotypes. A Zeiss Axio-Observer M1 inverted confocal microscope with a
Yokogawa spinning disk and Zen 2 software (Zeiss) was used for imaging. For
analysis of the area of spared tissue, images of whole spinal cord cross sections
stained with GFAP were taken at 100× magnification and analyzed in ImageJ
(NIH). The intact area was determined by manually circling the lesion border
indicated by GFAP+ immunoreactivity with spared cytoarchitecture then calcu-
lating the total area for each section.

For analysis of cell densities, we imaged the epicenter of injury and the next two
sections 200 and 400 µm rostral and caudal for each animal for a total of five
sections per mouse. We performed systematic uniform random sampling within
each section70 by overlying a grid (individual grid size 103 µm × 108 µm) onto a
low magnification preview image of a cross section of spinal cord. One counting
square for every 3 × 3 grid area was imaged at 400 × magnification. Z-stacks were
imaged through the entire depth of the 20 µm thick section with 1 µm spacing
between optical sections, and cells were counted in three dimensional space within
a 100 × 100 µm optical disector. Nuclei that came into focus and were within the
optical disector or in contact with right and upper edge were counted to ensure
only unique objects were quantified. We analyzed approximately 10–15 Z-stacks
per spinal cord section, depending on the size of the cord after injury. The number
of cells within the specified volume of the sampling box were averaged per section,
giving the density of cells per mm3.

Assessments of the density of newly generated myelin sheathes were examined
within the spared tissue at epicenter and 200 µm rostral and caudal. Similar to the
quantifications for cell densities, we overlaid a grid (individual grids 68.5 µm ×
69.0 µm) across a cross section of the spinal cord then used systematic uniform
random sampling to image a Z-stack in one out of every nine 3 × 3 grid boxes at
630× magnification through its entire depth. We imaged approximately 15–20
images per spinal cord cross section, depending on the size of the cord after injury.
Images were quantified in the middle optical section of the in focus Z stacks within
an optical disector of 4047.4 µm2. New myelin was defined as colocalization of GFP
fluorescence with myelin fluorescence (MBP or P0) that fully surrounded an axon
(SMI312 or NF200-positive).

Toluidine blue staining and electron microscopy. Spinal cords embedded in
resin were sectioned to 1 µm thickness on an ultramicrotome (Ultracut E, Reichert-
Jung). Ultra- and semithin sections were collected every 20 µm and semithin sec-
tions were viewed under a light microscope to find the injury epicenter, defined by
the lowest number of myelinated axons by a rater blinded to genotype. Myelin was
visualized in semithin sections by brief staining with 1% toluidine blue and 2%
borax solution then coverslipped with Permount (Fisher Scientific, Fair Lawn, NJ,
SP15). The imaging of toluidine blue semithins was performed on a Zeiss, Axio
Imager.M2 microscope at 630× magnification. The entire cross section at epicenter
was imaged. A grid with box dimensions of 50 µm × 50 µm was overlaid on top of
the merged image. We employed systematic uniform random sampling, counting
one in every seven grids. This was done over the extent of the spared ventrolateral
white matter at the injury epicenter. Spared tissue was indicated by intact
cytoarchitecture and the presence of myelin sheaths. Between 1500 and 2500
myelin sheaths were counter per animal.

For transmission electron microscopy, ultrathin sections of 100 nm thickness at
the lesion epicenter were stained with Reynold’s lead citrate and uranyl acetate to
enhance contrast, and imaged at 5000× primary magnification on a Zeiss EM910
equipped with a digital camera. At least ten nonoverlapping electron micrographs
were systematically imaged within the dorsal column and spared ventrolateral
white matter at six WPI. Myelin, axon diameter, and axon density were determined
by a blinded observer. G-ratios were evaluated from a total of 533 axons in control,
and 811 axons in Myrf ICKO mice. The density of unmyelinated axons was
multiplied by the area of intact white matter to determine the total number of
unmyelinated axons for each mouse at lesion epicenter.

Behavioral assessments. All behavioral assessments were performed during the
dark cycle to increase activity. The raters were blinded to animal genotype while
running behavioral tests and during subsequent analyses. Behavioral assessements
were run in mice lacking the mT/mG reporter to avoid any confounding effects of
the expression of fluorescent proteins on myelin compaction or behavioral func-
tion. Three different motor behavioral assessments were conducted: open field
testing using the Basso mouse scale (BMS)69, regular horizontal ladder48, and
Catwalk gait analysis50. Mice were handled repeatedly and pretrained on the
Catwalk and horizontal ladder taks by running the mice three times per day for five
consecutive days prior to baseline testing. Mice were familiarized with BMS open
field box with cagemates, then alone prior to testing. All animals were then tested
before and after tamoxifen induction to establish baseline values.

During open field BMS testing mice were placed into a 150 by 90 cm clear
plexiglass box with 30 cm high sides and observed by two blinded raters. The BMS
assessed hindlimb function, tail position, trunk stability, and coordination69. Scores
were averaged between limbs. The BMS subscore, a cumulative score based off the
frequency of stepping, paw position, level of coordination, trunk stability and tail
position, was also recorded69.

For horizontal regular ladder analysis, mice were videotaped with a high
definition camera (Sony, HDR-XR200) crossing of 30 rungs spaced 1.3 cm apart at

30 cm height. Each mouse had five complete runs recorded and analyzed per time
point. Mice were rerun if they paused for more than several seconds, reared or
reversed course. At least 15 min were given per mouse between runs to reduce
fatigue. Analysis reported the number of success (plantar or toe placements on the
rung or skipped rungs) as well as errors (slips, misses, and drags) and scored by a
blinded observer48. Three mice were excluded from analysis (n= 2 controls and
n= 1Myrf ICKO). These mice dragged more than half the run during the two WPI
time point and were strong outliers for percent error (three times the interquartile
range from the first or third quartile) at two or more consecutive time points after
injury.

Gait analysis was performed using the Noldus Catwalk. The camera was placed
20 cm below the runway and mice run through a 5 cm wide darkened tunnel. At
least five uninterrupted crossings with continuous movement were recorded. The
runs were averaged for each animal. Only runs which had three consistently sped
step cycles were analyzed (at least four per animal per timepoint). The settings on
the Catwalk were contrast 3990, brightness −140 mV, and analyzed at gain of 10.
During weeks three and five, the catwalk brightness was increased to −80 mV and
analyzed at gain of 16 to better resolve footprints in animals with poor gait. As this
could affect the intensity score this analysis was not compared between time points.

Statistical analysis. Statistical analyses were conducted using the Statistical
Package for the Social Sciences (SPSS) or Graphpad 6.0 (Prism). Individual data
points were displayed when possible and represent a single mouse. However, bar
graphs were plotted for lesion size, the contribution of PDGFRα-cell derived
myelin to total myelin, g-ratio frequency and BMS scores to increase clarity of the
data. If data met assumptions for normality, tested with the Shapiro–Wilk test, t-
tests were run with or without Welch’s correction depending on the homogeneity
of variance (tested with Levene’s test). Comparisons of the density of recombined
oligodendrocytes at specific distances from lesion epicenter or lesion area were
compared using a two-way ANOVA with Tukey’s post hoc test to detect individual
differences. Linear regression was used to determine differences between g-ratios
across the range of axon diameters. The Kolmgorov–Smirnov test was used to
determine differences in the percent distribution of g-ratios between control and
Myrf ICKO mice. For behavioral analyses and analyses, a two-way repeated
measures ANOVA was conducted with comparisons using Tukey’s or Šidák post
hoc to compare individual groups. Comparisons were two-tailed and considered
statistically significant if P values (P) < 0.05.

Data availability. All relevant data and step by step procedures used in this study
are available from the authors by request.
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