546 research outputs found

    EMBRACE@Nancay: An Ultra Wide Field of View Prototype for the SKA

    Full text link
    A revolution in radio receiving technology is underway with the development of densely packed phased arrays for radio astronomy. This technology can provide an exceptionally large field of view, while at the same time sampling the sky with high angular resolution. Such an instrument, with a field of view of over 100 square degrees, is ideal for performing fast, all-sky, surveys, such as the "intensity mapping" experiment to measure the signature of Baryonic Acoustic Oscillations in the HI mass distribution at cosmological redshifts. The SKA, built with this technology, will be able to do a billion galaxy survey. I will present a very brief introduction to radio interferometry, as well as an overview of the Square Kilometre Array project. This will be followed by a description of the EMBRACE prototype and a discussion of results and future plans.Comment: to appear in proceedings of the INFIERI Summer School INtelligent Signal Processing for FrontIEr Research and Industry, Paris 201

    Characterization of a dense aperture array for radio astronomy

    Get PDF
    EMBRACE@Nancay is a prototype instrument consisting of an array of 4608 densely packed antenna elements creating a fully sampled, unblocked aperture. This technology is proposed for the Square Kilometre Array and has the potential of providing an extremely large field of view making it the ideal survey instrument. We describe the system,calibration procedures, and results from the prototype.Comment: 17 pages, accepted for publication in A&

    |V|: New insight into the circular polarization of radio pulsars

    Full text link
    We present a study of single pulses from nine bright northern pulsars to investigate the behaviour of circular polarisation, V. The observations were conducted with the Effelsberg 100-m radio telescope at 1.41 GHz and 4.85 GHz and the Westerbork radio telescope at 352 MHz. For the first time, we present the average profile of the absolute circular polarisation |V| in the single pulses. We demonstrate that the average profile of |V| is the distinguishing feature between pulse components that exhibit low V in the single pulses and components that exhibit high V of either handedness, despite both cases resulting in a low mean. We also show that the |V| average profile remains virtually constant with frequency, which is not generally the case for V, leading us to the conclusion that |V| is a key quantity in the pulsar emission problem.Comment: 5 pages, accepted for publication in MNRAS letter

    A GPU-based survey for millisecond radio transients using ARTEMIS

    Get PDF
    Astrophysical radio transients are excellent probes of extreme physical processes originating from compact sources within our Galaxy and beyond. Radio frequency signals emitted from these objects provide a means to study the intervening medium through which they travel. Next generation radio telescopes are designed to explore the vast unexplored parameter space of high time resolution astronomy, but require High Performance Computing (HPC) solutions to process the enormous volumes of data that are produced by these telescopes. We have developed a combined software /hardware solution (code named ARTEMIS) for real-time searches for millisecond radio transients, which uses GPU technology to remove interstellar dispersion and detect millisecond radio bursts from astronomical sources in real-time. Here we present an introduction to ARTEMIS. We give a brief overview of the software pipeline, then focus specifically on the intricacies of performing incoherent de-dispersion. We present results from two brute-force algorithms. The first is a GPU based algorithm, designed to exploit the L1 cache of the NVIDIA Fermi GPU. Our second algorithm is CPU based and exploits the new AVX units in Intel Sandy Bridge CPUs.Comment: 4 pages, 7 figures. To appear in the proceedings of ADASS XXI, ed. P.Ballester and D.Egret, ASP Conf. Se

    Stokes tomography of radio pulsar magnetospheres. I. Linear polarization

    Full text link
    Polarimetric studies of pulsar radio emission traditionally concentrate on how the Stokes vector (I, Q, U, V) varies with pulse longitude, with special emphasis on the position angle (PA) swing of the linearly polarized component. The interpretation of the PA swing in terms of the rotating vector model is limited by the assumption of an axisymmetric magnetic field and the degeneracy of the output with respect to the orientation and magnetic geometry of the pulsar; different combinations of the latter two properties can produce similar PA swings. This paper introduces Stokes phase portraits as a supplementary diagnostic tool with which the orientation and magnetic geometry can be inferred more accurately. The Stokes phase portraits feature unique patterns in the I-Q, I-U, and Q-U planes, whose shapes depend sensitively on the magnetic geometry, inclination angle, beam and polarization patterns, and emission altitude. We construct look-up tables of Stokes phase portraits and PA swings for pure and current-modified dipole fields, filled core and hollow cone beams, and two empirical linear polarization models, L/I = \cos \theta_0 and L/I = \sin \theta_0, where \theta_0 is the colatitude of the emission point. We compare our look-up tables to the measured phase portraits of 24 pulsars in the European Pulsar Network online database. We find evidence in 60% of the objects that the radio emission region may depart significantly from low altitudes, even when the PA swing is S-shaped and/or the pulse-width-period relation is well satisfied. On the other hand, the data are explained adequately if the emission altitude exceeds ~10% of the light cylinder radius. We conclude that Stokes phase portraits should be analysed concurrently with the PA swing and pulse profiles in future when interpreting radio pulsar polarization data.Comment: 60 pages, 58 figures, submitted to MNRAS, accepted 13 Oct 201

    Optical polarisation of the Crab pulsar: precision measurements and comparison to the radio emission

    Full text link
    The linear polarisation of the Crab pulsar and its close environment was derived from observations with the high-speed photo-polarimeter OPTIMA at the 2.56-m Nordic Optical Telescope in the optical spectral range (400 - 750 nm). Time resolution as short as 11 microseconds, which corresponds to a phase interval of 1/3000 of the pulsar rotation, and high statistics allow the derivation of polarisation details never achieved before. The degree of optical polarisation and the position angle correlate in surprising details with the light curves at optical wavelengths and at radio frequencies of 610 and 1400 MHz. Our observations show that there exists a subtle connection between presumed non-coherent (optical) and coherent (radio) emissions. This finding supports previously detected correlations between the optical intensity of the Crab and the occurrence of giant radio pulses. Interpretation of our observations require more elaborate theoretical models than those currently available in the literature.Comment: 21 pages, 13 figures, uses AMS.sty, mn2e.cls, mn2e.bst and natbib.sty, submitted to MNRA

    Stokes tomography of radio pulsar magnetospheres. II. Millisecond pulsars

    Full text link
    The radio polarization characteristics of millisecond pulsars (MSPs) differ significantly from those of non-recycled pulsars. In particular, the position angle (PA) swings of many MSPs deviate from the S-shape predicted by the rotating vector model, even after relativistic aberration is accounted for, indicating that they have non-dipolar magnetic geometries, likely due to a history of accretion. Stokes tomography uses phase portraits of the Stokes parameters as a diagnostic tool to infer a pulsar's magnetic geometry and orientation. This paper applies Stokes tomography to MSPs, generalizing the technique to handle interpulse emission. We present an atlas of look-up tables for the Stokes phase portraits and PA swings of MSPs with current-modified dipole fields, filled core and hollow cone beams, and two empirical linear polarization models. We compare our look-up tables to data from 15 MSPs and find that the Stokes phase portraits for a current-modified dipole approximately match several MSPs whose PA swings are flat or irregular and cannot be reconciled with the standard axisymmetric rotating vector model. PSR J1939+2134 and PSR J0437-4715 are modelled in detail. The data from PSR J1939+2134 at 0.61\,GHz can be fitted well with a current-modified dipole at (α,i)=(22±2,80±1)(\alpha, i) = (22 \pm 2^\circ, 80 \pm 1^\circ) and emission altitude 0.4 rLCr_\text{LC}. The fit is less accurate for PSR J1939+2134 at 1.414\,GHz, and for PSR J0437-4715 at 1.44\,GHz, indicating that these objects may have a more complicated magnetic field geometry, such as a localized surface anomaly or a polar magnetic mountain.Comment: 38 pages, 33 figures, accepted for publication by MNRA

    Expansion-induced contribution to the precession of binary orbits

    Get PDF
    We point out the existence of new effects of global spacetime expansion on local binary systems. In addition to a possible change of orbital size, there is a contribution to the precession of elliptic orbits, to be added to the well-known general relativistic effect in static spacetimes, and the eccentricity can change. Our model calculations are done using geodesics in a McVittie metric, representing a localized system in an asymptotically Robertson-Walker spacetime; we give a few numerical estimates for that case, and indicate ways in which the model should be improved.Comment: revtex, 7 pages, no figures; revised for publication in Classical and Quantum Gravity, with minor changes in response to referees' comment

    Pulsar Searches with the SKA

    Get PDF
    The Square Kilometre Array will be an amazing instrument for pulsar astronomy. While the full SKA will be sensitive enough to detect all pulsars in the Galaxy visible from Earth, already with SKA1, pulsar searches will discover enough pulsars to increase the currently known population by a factor of four, no doubt including a range of amazing unknown sources. Real time processing is needed to deal with the 60 PB of pulsar search data collected per day, using a signal processing pipeline required to perform more than 10 POps. Here we present the suggested design of the pulsar search engine for the SKA and discuss challenges and solutions to the pulsar search venture.Comment: 4 pages, 1 figure. To be published in Proceedings of IAU Symposium 337: Pulsar Astrophysics - The Next 50 Year

    The High Time Resolution Universe Pulsar Survey IV: Discovery and polarimetry of millisecond pulsars

    Full text link
    We present the discovery of six millisecond pulsars (MSPs) in the High Time Resolution Universe (HTRU) survey for pulsars and fast transients carried out with the Parkes radio telescope. All six are in binary systems with approximately circular orbits and are likely to have white dwarf companions. PSR J1017-7156 has a high flux density and a narrow pulse width, making it ideal for precision timing experiments. PSRs J1446-4701 and J1125-5825 are coincident with gamma-ray sources, and folding the high-energy photons with the radio timing ephemeris shows evidence of pulsed gamma-ray emission. PSR J1502-6752 has a spin period of 26.7 ms, and its low period derivative implies that it is a recycled pulsar. The orbital parameters indicate it has a very low mass function, and therefore a companion mass much lower than usually expected for such a mildly recycled pulsar. In addition we present polarisation profiles for all 12 MSPs discovered in the HTRU survey to date. Similar to previous observations of MSPs, we find that many have large widths and a wide range of linear and circular polarisation fractions. Their polarisation profiles can be highly complex, and although the observed position angles often do not obey the rotating vector model, we present several examples of those that do. We speculate that the emission heights of MSPs are a substantial fraction of the light cylinder radius in order to explain broad emission profiles, which then naturally leads to a large number of cases where emission from both poles is observed.Comment: Update to correct affiliation for CAASTRO. 16 pages, 18 figures. Accepted for publication in MNRA
    corecore