Abstract

The radio polarization characteristics of millisecond pulsars (MSPs) differ significantly from those of non-recycled pulsars. In particular, the position angle (PA) swings of many MSPs deviate from the S-shape predicted by the rotating vector model, even after relativistic aberration is accounted for, indicating that they have non-dipolar magnetic geometries, likely due to a history of accretion. Stokes tomography uses phase portraits of the Stokes parameters as a diagnostic tool to infer a pulsar's magnetic geometry and orientation. This paper applies Stokes tomography to MSPs, generalizing the technique to handle interpulse emission. We present an atlas of look-up tables for the Stokes phase portraits and PA swings of MSPs with current-modified dipole fields, filled core and hollow cone beams, and two empirical linear polarization models. We compare our look-up tables to data from 15 MSPs and find that the Stokes phase portraits for a current-modified dipole approximately match several MSPs whose PA swings are flat or irregular and cannot be reconciled with the standard axisymmetric rotating vector model. PSR J1939+2134 and PSR J0437-4715 are modelled in detail. The data from PSR J1939+2134 at 0.61\,GHz can be fitted well with a current-modified dipole at (α,i)=(22±2,80±1)(\alpha, i) = (22 \pm 2^\circ, 80 \pm 1^\circ) and emission altitude 0.4 rLCr_\text{LC}. The fit is less accurate for PSR J1939+2134 at 1.414\,GHz, and for PSR J0437-4715 at 1.44\,GHz, indicating that these objects may have a more complicated magnetic field geometry, such as a localized surface anomaly or a polar magnetic mountain.Comment: 38 pages, 33 figures, accepted for publication by MNRA

    Similar works

    Full text

    thumbnail-image

    Available Versions