92 research outputs found

    An analogue of the antibiotic teicoplanin prevents flavivirus entry in vitro.

    Get PDF
    There is an urgent need for potent inhibitors of dengue virus (DENV) replication for the treatment and/or prophylaxis of infections with this virus. We here report on an aglycon analogue of the antibiotic teicoplanin (code name LCTA-949) that inhibits DENV-induced cytopathic effect (CPE) in a dose-dependent manner. Virus infection was completely inhibited at concentrations that had no adverse effect on the host cells. These findings were corroborated by quantification of viral RNA levels in culture supernatant. Antiviral activity was also observed against other flaviviruses such as the yellow fever virus and the tick-borne encephalitis virus (TBEV). In particular, potent antiviral activity was observed against TBEV. Time-of-drug-addition experiments indicated that LCTA-949 inhibits an early stage in the DENV replication cycle; however, a virucidal effect was excluded. This observation was corroborated by the fact that LCTA-949 lacks activity on DENV subgenomic replicon (that does not encode structural proteins) replication. Using a microsopy-based binding and fusion assay employing DiD-labeled viruses, it was shown that LCTA-949 targets the early stage (binding/entry) of the infection. Moreover, LCTA-949 efficiently inhibits infectivity of DENV particles pre-opsonized with antibodies, thus potentially also inhibiting antibody-dependent enhancement (ADE). In conclusion, LCTA-949 exerts in vitro activity against several flaviviruses and does so (as shown for DENV) by interfering with an early step in the viral replication cycle.Fil: De Burghgraeve, Tine. Katholikie Universiteit Leuven; BélgicaFil: Kaptein, Suzanne J. F.. Katholikie Universiteit Leuven; BélgicaFil: Ayala Nunez, Nilda V.. University of Groningen; Países BajosFil: Mondotte, Juan Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Pastorino, Boris. Université de la Méditerranée; FranciaFil: Printsevskaya, Svetlana S.. Russian Academy of Medical Sciences; RusiaFil: de Lamballerie, Xavier. Université de la Méditerranée; FranciaFil: Jacobs, Michael. Royal Free & University College Medical School; Reino UnidoFil: Preobrazhenskaya, Maria. Russian Academy of Medical Sciences; RusiaFil: Gamarnik, Andrea Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Smit, Jolanda M.. University of Groningen; Países BajosFil: Neyts, Johan. Katholikie Universiteit Leuven; Bélgic

    The legacy of ZikaPLAN: a transnational research consortium addressing Zika

    Get PDF
    Global health research partnerships with institutions from high-income countries and low- and middle-income countries are one of the European Commission's flagship programmes. Here, we report on the ZikaPLAN research consortium funded by the European Commission with the primary goal of addressing the urgent knowledge gaps related to the Zika epidemic and the secondary goal of building up research capacity and establishing a Latin American-European research network for emerging vector-borne diseases. Five years of collaborative research effort have led to a better understanding of the full clinical spectrum of congenital Zika syndrome in children and the neurological complications of Zika virus infections in adults and helped explore the origins and trajectory of Zika virus transmission. Individual-level data from ZikaPLAN`s cohort studies were shared for joint analyses as part of the Zika Brazilian Cohorts Consortium, the European Commission-funded Zika Cohorts Vertical Transmission Study Group, and the World Health Organization-led Zika Virus Individual Participant Data Consortium. Furthermore, the legacy of ZikaPLAN includes new tools for birth defect surveillance and a Latin American birth defect surveillance network, an enhanced Guillain-Barre Syndrome research collaboration, a de-centralized evaluation platform for diagnostic assays, a global vector control hub, and the REDe network with freely available training resources to enhance global research capacity in vector-borne diseases

    STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters

    Get PDF
    Emergence of SARS-CoV-2 causing COVID-19 has resulted in hundreds of thousands of deaths. In search for key targets of effective therapeutics, robust animal models mimicking COVID-19 in humans are urgently needed. Here, we show that Syrian hamsters, in contrast to mice, are highly permissive to SARS-CoV-2 and develop bronchopneumonia and strong inflammatory responses in the lungs with neutrophil infiltration and edema, further confirmed as consolidations visualized by micro-CT alike in clinical practice. Moreover, we identify an exuberant innate immune response as key player in pathogenesis, in which STAT2 signaling plays a dual role, driving severe lung injury on the one hand, yet restricting systemic virus dissemination on the other. Our results reveal the importance of STAT2-dependent interferon responses in the pathogenesis and virus control during SARS-CoV-2 infection and may help rationalizing new strategies for the treatment of COVID-19 patients. SARS-CoV-2 infection can result in severe lung inflammation and pathology, but host response remains incompletely understood. Here the authors show in Syrian hamsters that STAT2 signaling restricts systemic virus dissemination but also drives severe lung injury, playing a dual role in SARS-CoV-2 infection

    ZikaPLAN: addressing the knowledge gaps and working towards a research preparedness network in the Americas.

    Get PDF
    Zika Preparedness Latin American Network (ZikaPLAN) is a research consortium funded by the European Commission to address the research gaps in combating Zika and to establish a sustainable network with research capacity building in the Americas. Here we present a report on ZikaPLAN`s mid-term achievements since its initiation in October 2016 to June 2019, illustrating the research objectives of the 15 work packages ranging from virology, diagnostics, entomology and vector control, modelling to clinical cohort studies in pregnant women and neonates, as well as studies on the neurological complications of Zika infections in adolescents and adults. For example, the Neuroviruses Emerging in the Americas Study (NEAS) has set up more than 10 clinical sites in Colombia. Through the Butantan Phase 3 dengue vaccine trial, we have access to samples of 17,000 subjects in 14 different geographic locations in Brazil. To address the lack of access to clinical samples for diagnostic evaluation, ZikaPLAN set up a network of quality sites with access to well-characterized clinical specimens and capacity for independent evaluations. The International Committee for Congenital Anomaly Surveillance Tools was formed with global representation from regional networks conducting birth defects surveillance. We have collated a comprehensive inventory of resources and tools for birth defects surveillance, and developed an App for low resource regions facilitating the coding and description of all major externally visible congenital anomalies including congenital Zika syndrome. Research Capacity Network (REDe) is a shared and open resource centre where researchers and health workers can access tools, resources and support, enabling better and more research in the region. Addressing the gap in research capacity in LMICs is pivotal in ensuring broad-based systems to be prepared for the next outbreak. Our shared and open research space through REDe will be used to maximize the transfer of research into practice by summarizing the research output and by hosting the tools, resources, guidance and recommendations generated by these studies. Leveraging on the research from this consortium, we are working towards a research preparedness network

    Broad Antiviral Activity of Carbohydrate-Binding Agents against the Four Serotypes of Dengue Virus in Monocyte-Derived Dendritic Cells

    Get PDF
    BACKGROUND: Dendritic cells (DC), present in the skin, are the first target cells of dengue virus (DENV). Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) is present on DC and recognizes N-glycosylation sites on the E-glycoprotein of DENV. Thus, the DC-SIGN/E-glycoprotein interaction can be considered as an important target for inhibitors of viral replication. We evaluated various carbohydrate-binding agents (CBAs) against all four described serotypes of DENV replication in Raji/DC-SIGN(+) cells and in monocyte-derived DC (MDDC). METHODOLOGY/PRINCIPAL FINDINGS: A dose-dependent anti-DENV activity of the CBAs Hippeastrum hybrid (HHA), Galanthus nivalis (GNA) and Urtica dioica (UDA), but not actinohivin (AH) was observed against all four DENV serotypes as analyzed by flow cytometry making use of anti-DENV antibodies. Remarkably, the potency of the CBAs against DENV in MDDC cultures was significantly higher (up to 100-fold) than in Raji/DC-SIGN(+) cells. Pradimicin-S (PRM-S), a small-size non-peptidic CBA, exerted antiviral activity in MDDC but not in Raji/DC-SIGN(+) cells. The CBAs act at an early step of DENV infection as they bind to the viral envelope of DENV and subsequently prevent virus attachment. Only weak antiviral activity of the CBAs was detected when administered after the virus attachment step. The CBAs were also able to completely prevent the cellular activation and differentiation process of MDDC induced upon DENV infection. CONCLUSIONS/SIGNIFICANCE: The CBAs exerted broad spectrum antiviral activity against the four DENV serotypes, laboratory-adapted viruses and low passage clinical isolates, evaluated in Raji/DC-SIGN(+) cells and in primary MDDC

    Animal models for COVID-19

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (frst detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the fndings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.info:eu-repo/semantics/acceptedVersio

    Towards antiviral therapies for treating dengue virus infections

    No full text
    Dengue virus is an emerging human pathogen that poses a huge public health burden by infecting annually about 390 million individuals of which a quarter report with clinical manifestations. Although progress has been made in understanding dengue pathogenesis, a licensed vaccine or antiviral therapy against this virus is still lacking. Treatment of patients is confined to symptomatic alleviation and supportive care. The development of dengue therapeutics thus remains of utmost importance. This review focuses on the few molecules that were evaluated in dengue virus-infected patients: balapiravir, chloroquine, lovastatin, prednisolone and celgosivir. The lessons learned from these clinical trials can be very helpful for the design of future trials for the next generation of dengue virus inhibitors.publisher: Elsevier articletitle: Towards antiviral therapies for treating dengue virus infections journaltitle: Current Opinion in Pharmacology articlelink: http://dx.doi.org/10.1016/j.coph.2016.06.002 content_type: article copyright: © 2016 Elsevier Ltd. All rights reserved.status: publishe

    Antiviral treatment of chronic hepatitis B virus (HBV)

    No full text
    While 25 compounds have been formally licensed for the treatment of HIV infection (AIDS), only seven licensed products are currently available for the treatment of chronic hepatitis B virus (HBV) infection: interferon-α, pegylated interferon-α, lamivudine, adefovir (dipivoxil), entecavir, telbivudine and tenofovir (disoproxil fumarate). In contrast to the treatment of HIV infections where the individual drugs are routinely used in combination, for the treatment of chronic HBV infection the individual drugs are generally used in monotherapy. In principle, combination drug therapy should allow reducing the likelihood of drug-resistant development.status: publishe

    Antiviral Treatment of Chronic Hepatitis B Virus (HBV) Infections

    Get PDF
    While 25 compounds have been formally licensed for the treatment of HIV infection (AIDS), only seven licensed products are currently available for the treatment of chronic hepatitis B virus (HBV) infection: interferon-α, pegylated interferon-α, lamivudine, adefovir (dipivoxil), entecavir, telbivudine and tenofovir (disoproxil fumarate). In contrast to the treatment of HIV infections where the individual drugs are routinely used in combination, for the treatment of chronic HBV infection the individual drugs are generally used in monotherapy. In principle, combination drug therapy should allow reducing the likelihood of drug-resistant development

    A Viral Polymerase Inhibitor Reduces Zika Virus Replication in the Reproductive Organs of Male Mice

    No full text
    In humans, Zika virus and viral RNA have been detected in semen up to 2.2 months and 6 months post infection (pi), respectively. Although the contribution of sexual transmission to the spread of ZIKV is too low to sustain an outbreak, it can increase the risk of infection and the epidemic size as well as prolong the duration of an outbreak. In this study, we explored the potential of antivirals to serve as an effective strategy to prevent sexual transmission. Male AG129 mice infected with a ZIKV isolate from Suriname were treated with the nucleoside analog, 7-deaza-2'-C-methyladenosine (7DMA), that was previously shown to be efficacious in reducing ZIKV viremia and delaying ZIKV-induced disease in mice. Following treatment, viral RNA and infectious virus titers were consistently reduced in the male reproductive organs compared to vehicle-treated mice. This reduction of ZIKV loads in the testis was confirmed by the detection of lower levels of ZIKV antigens. Our data illustrate the value of this mouse model to validate the efficacy of new potential ZIKV drugs at the level of the male reproductive system.status: publishe
    corecore