65 research outputs found

    Shedding of NG2 by MMP-13 Attenuates Anoikis

    Full text link
    Disruption of cell?matrix interactions can lead to anoikis?apoptosis due to loss of matrix contacts. We previously showed that Nerve/glial antigen 2 (NG2) is a novel anoikis receptor. Specifically, overexpression of NG2 leads to anoikis propagation, whereas its suppression leads to anoikis attenuation. Interestingly, NG2 expression decreases in late anoikis, suggesting that NG2 reduction is also critical to this process. Thus, we hypothesized that NG2 undergoes cleavage to curtail anoikis propagation. Further, since matrix metalloproteinases (MMPs) cleave cell surface receptors, play a major role in modulating apoptosis, and are associated with death receptor cleavage during apoptosis, we further hypothesized that cleavage of NG2 could be mediated by MMPs to regulate anoikis. Indeed, anoikis conditions triggered release of the NG2 extracellular domain into condition media during late apoptosis, and this coincided with increased MMP-13 expression. Treatment with an MMP-13 inhibitor and MMP-13 siRNA increased anoikis, since these treatments blocked NG2 release. Further, NG2-positive cells exhibited increased anoikis upon MMP-13 inhibition, whereas MMP-13 inhibition did not increase anoikis in NG2-null cells, corroborating that retention of NG2 on the cell membrane is critical for sustaining anoikis, and its cleavage for mediating anoikis attenuation. Similarly, NG2 suppression with siRNA inhibited NG2 release and anoikis. In contrast, MMP-13 overexpression or exogenous MMP-13 reduced anoikis by more effectively shedding NG2. In conclusion, maintenance of NG2 on the cell surface promotes anoikis propagation, whereas its shedding by MMP-13 actions attenuates anoikis. Given that these findings are derived in the context of periodontal ligament fibroblasts, these data have implications for periodontal inflammation and periodontal disease pathogenesis.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140362/1/dna.2014.2399.pd

    Treponema denticola increases MMP‐2 expression and activation in the periodontium via reversible DNA and histone modifications

    Full text link
    Host‐derived matrix metalloproteinases (MMPs) and bacterial proteases mediate destruction of extracellular matrices and supporting alveolar bone in periodontitis. The Treponema denticola dentilisin protease induces MMP‐2 expression and activation in periodontal ligament (PDL) cells, and dentilisin‐mediated activation of pro‐MMP‐2 is required for cellular fibronectin degradation. Here, we report that T. denticola regulates MMP‐2 expression through epigenetic modifications in the periodontium. PDL cells were treated with epigenetic enzyme inhibitors before or after T. denticola challenge. Fibronectin fragmentation, MMP‐2 expression, and activation were assessed by immunoblot, zymography, and qRT‐PCR, respectively. Chromatin modification enzyme expression in T. denticola‐challenged PDL cells and periodontal tissues were evaluated using gene arrays. Several classes of epigenetic enzymes showed significant alterations in transcription in diseased tissue and T. denticola‐challenged PDL cells. T. denticola‐mediated MMP‐2 expression and activation were significantly reduced in PDL cells treated with inhibitors of aurora kinases and histone deacetylases. In contrast, DNA methyltransferase inhibitors had little effect, and inhibitors of histone acetyltransferases, methyltransferases, and demethylases exacerbated T. denticola‐mediated MMP‐2 expression and activation. Chronic epigenetic changes in periodontal tissues mediated by T. denticola or other oral microbes may contribute to the limited success of conventional treatment of chronic periodontitis and may be amenable to therapeutic reversal.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142926/1/cmi12815.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142926/2/cmi12815_am.pd

    Parathyroid Hormone Mediates Hematopoietic Cell Expansion through Interleukin-6

    Get PDF
    Parathyroid hormone (PTH) stimulates hematopoietic cells through mechanisms of action that remain elusive. Interleukin-6 (IL-6) is upregulated by PTH and stimulates hematopoiesis. The purpose of this investigation was to identify actions of PTH and IL-6 in hematopoietic cell expansion. Bone marrow cultures from C57B6 mice were treated with fms-like tyrosine kinase-3 ligand (Flt-3L), PTH, Flt-3L plus PTH, or vehicle control. Flt-3L alone increased adherent and non-adherent cells. PTH did not directly impact hematopoietic or osteoclastic cells but acted in concert with Flt-3L to further increase cell numbers. Flt-3L alone stimulated proliferation, while PTH combined with Flt-3L decreased apoptosis. Flt-3L increased blasts early in culture, and later increased CD45+ and CD11b+ cells. In parallel experiments, IL-6 acted additively with Flt-3L to increase cell numbers and IL-6-deficient bone marrow cultures (compared to wildtype controls) but failed to amplify in response to Flt-3L and PTH, suggesting that IL-6 mediated the PTH effect. In vivo, PTH increased Lin- Sca-1+c-Kit+ (LSK) hematopoietic progenitor cells after PTH treatment in wildtype mice, but failed to increase LSKs in IL-6-deficient mice. In conclusion, PTH acts with Flt-3L to maintain hematopoietic cells by limiting apoptosis. IL-6 is a critical mediator of bone marrow cell expansion and is responsible for PTH actions in hematopoietic cell expansion

    The CS1 segment of fibronectin is involved in human OSCC pathogenesis by mediating OSCC cell spreading, migration, and invasion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The alternatively spliced V region or type III connecting segment III (IIICS) of fibronectin is important in early development, wound healing, and tumorigenesis, however, its role in oral cancer has not been fully investigated. Thus, we investigated the role of CS-1, a key site within the CSIII region of fibronectin, in human oral squamous cell carcinoma (OSCC).</p> <p>Methods</p> <p>To determine the expression of CS-1 in human normal and oral SCC tissue specimens immunohistochemical analyses were performed. The expression of CS1 was then associated with clinicopathological factors. To investigate the role of CS-1 in regulating OSCC cell spreading, migration and invasion, OSCC cells were assayed for spreading and migration in the presence of a CS-1 peptide or a CS-1 blocking peptide, and for invasion using Matrigel supplemented with these peptides. In addition, integrin α4siRNA or a focal adhesion kinase (FAK) anti-sense oligonucleotide was transfected into OSCC cells to examine the mechanistic role of integrin α4 or FAK in CS1-mediated cell spreading and migration, respectively.</p> <p>Results</p> <p>CS-1 expression levels were significantly higher in OSCC tissues compared to normal tissues (p < 0.05). Also, although, high levels of CS-1 expression were present in all OSCC tissue samples, low-grade tumors stained more intensely than high grade tumors. OSCC cell lines also expressed higher levels of CS-1 protein compared to normal human primary oral keratinocytes. There was no significant difference in total fibronectin expression between normal and OSCC tissues and cells. Inclusion of CS-1 in the in vitro assays enhanced OSCC cell spreading, migration and invasion, whereas the CS1 blocking peptide inhibited these processes. Suppression of integrin α4 significantly inhibited the CS1-mediated cell spreading. Furthermore, this migration was mediated by focal adhesion kinase (FAK), since FAK suppression significantly blocked the CS1-induced cell migration.</p> <p>Conclusion</p> <p>These data indicate that the CS-1 site of fibronectin is involved in oral cancer pathogenesis and in regulating OSCC cell spreading, migration and invasion.</p

    Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium::Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions

    Get PDF
    Periodontal health is defined by absence of clinically detectable inflammation. There is a biological level of immune surveillance that is consistent with clinical gingival health and homeostasis. Clinical gingival health may be found in a periodontium that is intact, i.e. without clinical attachment loss or bone loss, and on a reduced periodontium in either a non-periodontitis patient (e.g. in patients with some form of gingival recession or following crown lengthening surgery) or in a patient with a history of periodontitis who is currently periodontally stable. Clinical gingival health can be restored following treatment of gingivitis and periodontitis. However, the treated and stable periodontitis patient with current gingival health remains at increased risk of recurrent periodontitis, and accordingly, must be closely monitored. Two broad categories of gingival diseases include non-dental plaque biofilm-induced gingival diseases and dental plaque-induced gingivitis. Non-dental plaque biofilm-induced gingival diseases include a variety of conditions that are not caused by plaque and usually do not resolve following plaque removal. Such lesions may be manifestations of a systemic condition or may be localized to the oral cavity. Dental plaque-induced gingivitis has a variety of clinical signs and symptoms, and both local predisposing factors and systemic modifying factors can affect its extent, severity, and progression. Dental plaque-induced gingivitis may arise on an intact periodontium or on a reduced periodontium in either a non-periodontitis patient or in a currently stable "periodontitis patient" i.e. successfully treated, in whom clinical inflammation has been eliminated (or substantially reduced). A periodontitis patient with gingival inflammation remains a periodontitis patient (Figure 1), and comprehensive risk assessment and management are imperative to ensure early prevention and/or treatment of recurrent/progressive periodontitis. Precision dental medicine defines a patient-centered approach to care, and therefore, creates differences in the way in which a "case" of gingival health or gingivitis is defined for clinical practice as opposed to epidemiologically in population prevalence surveys. Thus, case definitions of gingival health and gingivitis are presented for both purposes. While gingival health and gingivitis have many clinical features, case definitions are primarily predicated on presence or absence of bleeding on probing. Here we classify gingival health and gingival diseases/conditions, along with a summary table of diagnostic features for defining health and gingivitis in various clinical situations

    Safety and efficacy of fluoxetine on functional outcome after acute stroke (AFFINITY): a randomised, double-blind, placebo-controlled trial

    Get PDF
    Background Trials of fluoxetine for recovery after stroke report conflicting results. The Assessment oF FluoxetINe In sTroke recoverY (AFFINITY) trial aimed to show if daily oral fluoxetine for 6 months after stroke improves functional outcome in an ethnically diverse population. Methods AFFINITY was a randomised, parallel-group, double-blind, placebo-controlled trial done in 43 hospital stroke units in Australia (n=29), New Zealand (four), and Vietnam (ten). Eligible patients were adults (aged ≄18 years) with a clinical diagnosis of acute stroke in the previous 2–15 days, brain imaging consistent with ischaemic or haemorrhagic stroke, and a persisting neurological deficit that produced a modified Rankin Scale (mRS) score of 1 or more. Patients were randomly assigned 1:1 via a web-based system using a minimisation algorithm to once daily, oral fluoxetine 20 mg capsules or matching placebo for 6 months. Patients, carers, investigators, and outcome assessors were masked to the treatment allocation. The primary outcome was functional status, measured by the mRS, at 6 months. The primary analysis was an ordinal logistic regression of the mRS at 6 months, adjusted for minimisation variables. Primary and safety analyses were done according to the patient's treatment allocation. The trial is registered with the Australian New Zealand Clinical Trials Registry, ACTRN12611000774921. Findings Between Jan 11, 2013, and June 30, 2019, 1280 patients were recruited in Australia (n=532), New Zealand (n=42), and Vietnam (n=706), of whom 642 were randomly assigned to fluoxetine and 638 were randomly assigned to placebo. Mean duration of trial treatment was 167 days (SD 48·1). At 6 months, mRS data were available in 624 (97%) patients in the fluoxetine group and 632 (99%) in the placebo group. The distribution of mRS categories was similar in the fluoxetine and placebo groups (adjusted common odds ratio 0·94, 95% CI 0·76–1·15; p=0·53). Compared with patients in the placebo group, patients in the fluoxetine group had more falls (20 [3%] vs seven [1%]; p=0·018), bone fractures (19 [3%] vs six [1%]; p=0·014), and epileptic seizures (ten [2%] vs two [<1%]; p=0·038) at 6 months. Interpretation Oral fluoxetine 20 mg daily for 6 months after acute stroke did not improve functional outcome and increased the risk of falls, bone fractures, and epileptic seizures. These results do not support the use of fluoxetine to improve functional outcome after stroke

    Oral health's inextricable connection to systemic health: Special populations bring to bear multimodal relationships and factors connecting periodontal disease to systemic diseases and conditions.

    No full text
    The landscape in dentistry is changing as emerging studies continue to reveal that periodontal health impacts systemic health, and vice versa. Population studies, clinical studies, and in vitro animal studies underscore the critical importance of oral health to systemic health. These inextricable relationships come to the forefront as oral diseases, such as periodontal disease, take root. Special populations bring to bear the multimodal relationships between oral and systemic health. Specifically, periodontal disease has been associated with diabetes, metabolic syndrome, obesity, eating disorders, liver disease, cardiovascular disease, Alzheimer disease, rheumatoid arthritis, adverse pregnancy outcomes, and cancer. Although bidirectional relationships are recognized, the potential for multiple comorbidities, relationships, and connections (multimodal relationships) also exists. Proposed mechanisms that mediate this connection between oral and systemic health include predisposing and precipitating factors, such as genetic factors (gene polymorphisms), environmental factors (stress, habits-such as smoking and high-fat diets/consumption of highly processed foods), medications, microbial dysbiosis and bacteremias/viremias/microbemias, and an altered host immune response. Thus, in a susceptible host, these predisposing and precipitating factors trigger the onset of periodontal disease and systemic disease/conditions. Further, high-throughput sequencing technologies are shedding light on the dark matter that comprises the oral microbiome. This has resulted in better characterization of the oral microbial dysbiosis, including putative bacterial periodontopathogens and shifts in oral virome composition during disease. Multiple laboratory and clinical studies have illustrated that both eukaryotic and prokaryotic viruses within subgingival plaque and periodontal tissues affect periodontal inflammation, putative periodontopathogens, and the host immune response. Although the association between herpesviruses and periodontitis and the degree to which these viruses directly aggravate periodontal tissue damage remain unclear, the benefits to periodontal health found from prolonged administration of antivirals in immunocompromised or immunodeficient individuals demonstrates that specific populations are possibly more susceptible to viral periodontopathogens. Thus, it may be important to further examine the implications of viral pathogen involvement in periodontitis and perhaps it is time to embrace the viral dark matter within the periodontal environment to fully comprehend the pathogenesis and systemic implications of periodontitis. Emerging data from the coronavirus disease 2019 pandemic further underscores the inextricable connection between oral and systemic health, with high levels of the severe acute respiratory syndrome coronavirus&nbsp;2 angiotensin-converting enzyme&nbsp;2 receptor noted on oral tissues (tongue) and an allostatic load or overload paradigm of chronic stress likely contributing to rapid breakdown of oral/dental, periodontal, and peri-implant tissues. These associations exist within a framework of viremias/bacteremias/microbemias, systemic inflammation, and/or disturbances of the immune system in a susceptible host. A thorough review of systemic and oral diseases and conditions and their mechanistic, predisposing, and precipitating factors are paramount to better addressing the oral and systemic health and needs of our patients
    • 

    corecore