184 research outputs found
CXCL4/Platelet Factor 4 is an agonist of CCR1 and drives human monocyte migration
Activated platelets release micromolar concentrations of the chemokine CXCL4/Platelet Factor-4. Deposition of CXCL4 onto the vascular endothelium is involved in atherosclerosis, facilitating monocyte arrest and recruitment by an as yet, unidentified receptor. Here, we demonstrate that CXCL4 drives chemotaxis of the monocytic cell line THP-1. Migration and intracellular calcium responses induced by CXCL4 were pertussis toxin-sensitive, implicating a GPCR in signal transduction. Cell treatment with chondroitinase ABC ablated migration, suggesting that cis presentation of CXCL4 by cell surface glycosaminoglycans to a GPCR is required. Although CXCR3 has been previously described as a CXCL4 receptor, THP-1 cells were unresponsive to CXCR3 ligands and CXCL4-induced migration was insensitive to a CXCR3 antagonist, suggesting that an alternative receptor is involved. Interrogating CC-class chemokine receptor transfectants, we unexpectedly found that CXCL4 could induce the migration of CCR1-expressing cells and also induce CCR1 endocytosis. Extending our findings to primary human monocytes, we observed that CXCL4 induced CCR1 endocytosis and could induce monocyte chemotaxis in a CCR1 antagonist-sensitive manner. Collectively, our data identify CCR1 as a previously elusive monocyte CXCL4 receptor and suggest that CCR1 may play a role in inflammation where the release of CXCL4 is implicated
Pulmonary epithelial cell-derived cytokine TGF-β1 Is a critical cofactor for enhanced innate lymphoid cell function
SummaryEpithelial cells orchestrate pulmonary homeostasis and pathogen defense and play a crucial role in the initiation of allergic immune responses. Maintaining the balance between homeostasis and inappropriate immune activation and associated pathology is particularly complex at mucosal sites that are exposed to billions of potentially antigenic particles daily. We demonstrated that epithelial cell-derived cytokine TGF-β had a central role in the generation of the pulmonary immune response. Mice that specifically lacked epithelial cell-derived TGF-β1 displayed a reduction in type 2 innate lymphoid cells (ILCs), resulting in suppression of interleukin-13 and hallmark features of the allergic response including airway hyperreactivity. ILCs in the airway lumen were primed to respond to TGF-β by expressing the receptor TGF-βRII and ILC chemoactivity was enhanced by TGF-β. These data demonstrate that resident epithelial cells instruct immune cells, highlighting the central role of the local environmental niche in defining the nature and magnitude of immune reactions
Pulmonary Epithelial Cell-Derived Cytokine TGF-β1 Is a Critical Cofactor for Enhanced Innate Lymphoid Cell Function.
Epithelial cells orchestrate pulmonary homeostasis and pathogen defense and play a crucial role in the initiation of allergic immune responses. Maintaining the balance between homeostasis and inappropriate immune activation and associated pathology is particularly complex at mucosal sites that are exposed to billions of potentially antigenic particles daily. We demonstrated that epithelial cell-derived cytokine TGF-β had a central role in the generation of the pulmonary immune response. Mice that specifically lacked epithelial cell-derived TGF-β1 displayed a reduction in type 2 innate lymphoid cells (ILCs), resulting in suppression of interleukin-13 and hallmark features of the allergic response including airway hyperreactivity. ILCs in the airway lumen were primed to respond to TGF-β by expressing the receptor TGF-βRII and ILC chemoactivity was enhanced by TGF-β. These data demonstrate that resident epithelial cells instruct immune cells, highlighting the central role of the local environmental niche in defining the nature and magnitude of immune reactions
SCFAs Induce Mouse Neutrophil Chemotaxis through the GPR43 Receptor
Short chain fatty acids (SCFAs) have recently attracted attention as potential mediators of the effects of gut microbiota on intestinal inflammation. Some of these effects have been suggested to occur through the direct actions of SCFAs on the GPR43 receptor in neutrophils, though the precise role of this receptor in neutrophil activation is still unclear. We show that mouse bone marrow derived neutrophils (BMNs) can chemotax effectively through polycarbonate filters towards a source of acetate, propionate or butyrate. Moreover, we show that BMNs move with good speed and directionality towards a source of propionate in an EZ-Taxiscan chamber coated with fibrinogen. These effects of SCFAs were mimicked by low concentrations of the synthetic GPR43 agonist phenylacetamide-1 and were abolished in GPR43−/− BMNs. SCFAs and phenylacetamide-1 also elicited GPR43-dependent activation of PKB, p38 and ERK and these responses were sensitive to pertussis toxin, indicating a role for Gi proteins. Phenylacetamide-1 also elicited rapid and transient activation of Rac1/2 GTPases and phosphorylation of ribosomal protein S6. Genetic and pharmacological intervention identified important roles for PI3Kγ, Rac2, p38 and ERK, but not mTOR, in GPR43-dependent chemotaxis. These results identify GPR43 as a bona fide chemotactic receptor for neutrophils in vitro and start to define important elements in its signal transduction pathways
Enhanced phagocytic response of macrophages to bacteria by physical impact caused by bacterial motility or centrifugation.
The mechanism of enhanced phagocytic and chemiluminescent responses of macrophages caused by bacterial motility (T. Tomita, E. Blumenstock, and S. Kanegasaki, Infect. Immun. 32:1242, 1981) was studied. Both responses increased up to a certain level with an increased number of motile bacteria, such as Salmonella typhimurium, Escherichia coli, or Pseudomonas aeruginosa, added. In contrast, only a slight increase was observed with the motility (mot) mutants of these bacteria, even when 4,000 bacteria per single macrophage were added. If nonmotile bacteria were centrifuged together with a monolayer culture of macrophages, the number of bacteria ingested per macrophage increased dramatically. This phenomenon was not observed in the presence of cytochalasin B or at a low temperature, and about half of the associated bacteria were killed within 30 min of prolonged incubation, indicating that the bacteria were not simply embedded on the macrophage surface. An observed biphasic increase of ingestion with an increase in centrifugal force suggested the existence of a threshold velocity for efficient phagocytosis. The minimum centrifugal force required for maximal response was determined under the conditions in which equalized collision frequency between bacteria and macrophages was maintained when different centrifugal forces were employed. From the value obtained (5 x g), the required rate of movement was calculated as approximately 2.5 microns/s, supposing that the bacterium is spherical and has a 1-micron radius. This value is much lower than the velocity of movement of motile bacteria (20 to 50 microns/s). The results indicate that physical impact caused by bacterial motility is enough to induce a high response of macrophages
- …