810 research outputs found
Recommended from our members
A Game-Theoretical Winner and Loser Model of Dominance Hierarchy Formation
Many animals spend large parts of their lives in groups. Within such groups, they need to find efficient ways of dividing available resources between them. This is often achieved by means of a dominance hierarchy, which in its most extreme linear form allocates a strict priority order to the individuals. Once a hierarchy is formed, it is often stable over long periods, but the formation of hierarchies among individuals with little or no knowledge of each other can involve aggressive contests. The outcome of such contests can have significant effects on later contests, with previous winners more likely to win (winner effects) and previous losers more likely to lose (loser effects). This scenario has been modelled by a number of authors, in particular by Dugatkin. In his model, individuals engage in aggressive contests if the assessment of their fighting ability relative to their opponent is above a threshold [Formula: see text]. Here we present a model where each individual can choose its own value [Formula: see text]. This enables us to address questions such as how aggressive should individuals be in order to take up one of the first places in the hierarchy? We find that a unique strategy evolves, as opposed to a mixture of strategies. Thus, in any scenario there exists a unique best level of aggression, and individuals should not switch between strategies. We find that for optimal strategy choice, the hierarchy forms quickly, after which there are no mutually aggressive contests
Recommended from our members
Modelling Dominance Hierarchies Under Winner and Loser Effects
Animals that live in groups commonly form themselves into dominance hierarchies which are used to allocate important resources such as access to mating opportunities and food. In this paper, we develop a model of dominance hierarchy formation based upon the concept of winner and loser effects using a simulation-based model and consider the linearity of our hierarchy using existing and new statistical measures. Two models are analysed: when each individual in a group does not know the real ability of their opponents to win a fight and when they can estimate their opponents' ability every time they fight. This estimation may be accurate or fall within an error bound. For both models, we investigate if we can achieve hierarchy linearity, and if so, when it is established. We are particularly interested in the question of how many fights are necessary to establish a dominance hierarchy
Modelling mineral dust using stereophotogrammetry
Real, three-dimensional shape of a dust particle is derived from a pair of scanning-electron microscope images by means of stereophotogrammetry. The resulting shape is discretized, and preliminary discrete-dipole-approximation computations for the single dust particle reveal that scattering by such an irregular shape differs notably from scattering by a sphere or a Gaussian random sphere which both are frequently used shape models for dust particles
Single scattering by realistic, inhomogeneous mineral dust particles with stereogrammetric shapes
Light scattering by single, inhomogeneous mineral dust particles was
simulated based on shapes and compositions derived directly from measurements
of real dust particles instead of using a mathematical shape model. We
demonstrate the use of the stereogrammetric shape retrieval method in the context
of single-scattering modelling of mineral dust for four different dust types
– all of them inhomogeneous – ranging from compact, equidimensional shapes
to very elongated and aggregate shapes. The three-dimensional particle shapes
were derived from stereo pairs of scanning-electron microscope images, and
inhomogeneous composition was determined by mineralogical interpretation of
localized elemental information based on energy-dispersive spectroscopy.
Scattering computations were performed for particles of equal-volume
diameters, from 0.08 μm up to 2.8 μm at 550 nm wavelength, using the
discrete-dipole approximation. Particle-to-particle variation in scattering
by mineral dust was found to be quite considerable and was not well
reproduced by simplified shapes of homogeneous spheres, spheroids, or
Gaussian random spheres. Effective-medium approximation results revealed that
particle inhomogeneity should be accounted for even for small amounts of
absorbing media (here up to 2% of the volume), especially when considering
scattering by inhomogeneous particles at size parameters 3<<i>x</i><8. When
integrated over a log-normal size distribution, the linear depolarization
ratio and single-scattering albedo were also found to be sensitive to
inhomogeneity. The methodology applied is work-intensive and the
light-scattering method used quite limited in terms of size parameter
coverage. It would therefore be desirable to find a sufficiently accurate but
simpler approach with fewer limitations for single-scattering modelling of
dust. For validation of such a method, the approach presented here could be
used for producing reference data when applied to a suitable set of target
particles
Mixing of mineral dust with urban pollution aerosol over Dakar (Senegal): Impact on dust physico-chemical and radiative properties.
In the framework of the Saharan Mineral Dust Experiment (SAMUM) in 2008, the mixing of the urban pollution
plume of Dakar (Senegal) with mineral dust was studied in detail using the German research aircraft Falcon which was
equipped with a nadir-looking high spectral resolution lidar (HSRL) and extensive aerosol in situ instrumentation. The
mineral dust layer as well as the urban pollution plume were probed remotely by the HSRL and in situ. Back trajectory
analyses were used to attribute aerosol samples to source regions.We found that the emission from the region of Dakar
increased the aerosol optical depth (532 nm) from approximately 0.30 over sea and over land east of Dakar to 0.35 in the city outflow. In the urban area, local black carbon (BC) emissions, or soot respectively, contributed more than 75% to aerosol absorption at 530 nm. In the dust layer, the single-scattering albedo at 530 nm was 0.96 � 0.99, whereas
we found a value of 0.908 �± 0.018 for the aerosol dominated by urban pollution. After 6h of transport over the North
Atlantic, the externally mixed mode of secondary aerosol particles had almost completely vanished, whereas the BC
agglomerates (soot) were still externally mixed with mineral dust particles
Recommended from our members
Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications
In the framework of the Saharan Mineral Dust Experiment (SAMUM) for the first time the spectral dependence of particle linear depolarization ratios was measured by combining four lidar systems. In this paper these measurements are compared with results from scattering theory based on the T-matrix method. For this purpose, in situ measurements—size distribution, shape distribution and refractive index—were used as input parameters; particle shape was approximated by spheroids. A sensitivity study showed that lidar-related parameters—lidar ratio Sp and linear depolarization ratio δp—are very sensitive to changes of all parameters. The simulated values of the δp are in the range of 20% and 31% and thus in the range of the measurements. The spectral dependence is weak, so that it could not be resolved by the measurements. Calculated lidar ratios based on the measured microphysics and considering equivalent radii up to 7.5μm show a range of possible values between 29 and 50 sr at λ = 532 nm. Larger Sp might be possible if the real part of the refractive index is small and the imaginary part is large. A strict validation was however not possible as too many microphysical parameters influence Sp and δp that could not be measured with the required accuracy
Mass deposition fluxes of Saharan mineral dust to the tropical northeast Atlantic Ocean: an intercomparison of methods
Mass deposition fluxes of mineral dust to the tropical northeast Atlantic Ocean were determined within this study. In the framework of SOPRAN (Surface Ocean Processes in the Anthropocene), the interaction between the atmosphere and the ocean in terms of material exchange were investigated at the Cape Verde atmospheric observatory (CVAO) on the island Sao Vicente for January 2009. Five different methods were applied to estimate the deposition flux, using different meteorological and physical measurements, remote sensing, and regional dust transport simulations. The set of observations comprises micrometeorological measurements with an ultra-sonic anemometer and profile measurements using 2-D anemometers at two different heights, and microphysical measurements of the size-resolved mass concentrations of mineral dust. In addition, the total mass concentration of mineral dust was derived from absorption photometer observations and passive sampling. The regional dust model COSMO-MUSCAT was used for simulations of dust emission and transport, including dry and wet deposition processes. This model was used as it describes the AOD's and mass concentrations realistic compared to the measurements and because it was run for the time period of the measurements. The four observation-based methods yield a monthly average deposition flux of mineral dust of 12–29 ng m−2 s−1. The simulation results come close to the upper range of the measurements with an average value of 47 ng m−2 s−1. It is shown that the mass deposition flux of mineral dust obtained by the combination of micrometeorological (ultra-sonic anemometer) and microphysical measurements (particle mass size distribution of mineral dust) is difficult to compare to modeled mass deposition fluxes when the mineral dust is inhomogeneously distributed over the investigated area
Recommended from our members
Ground-based off-line aerosol measurements at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: Microphysical properties and mineralogy
A large field experiment of the Saharan Mineral Dust Experiment (SAMUM) was performed in Praia, Cape Verde, in
January and February 2008. This work reports on the aerosol mass concentrations, size distributions and mineralogical
composition of the aerosol arriving at Praia. Three dust periods were recorded during the measurements, divided by
transitional periods and embedded in maritime-influenced situations. The total suspended particle mass/PM10/PM2.5
were 250/180/74μg/m3 on average for the first dust period (17–21 January) and 250/230/83μg/m3 for the second (24–26
January). The third period (28 January to 2 February) was the most intensive with 410/340/130 μg/m3. Four modes were
identified in the size distribution. The first mode (50–70 nm) and partly the second (700–1100 nm) can be regarded as
of marine origin, but some dust contributes to the latter. The third mode (2–4 μm) is dominated by advected dust, while
the intermittently occurring fourth mode (15–70 μm) may have a local contribution. The dust consisted of kaolinite
(dust/maritime period: 35%wt./25%wt.),K-feldspar (20%wt./25%wt.), illite (14%wt./10%wt.), quartz (11%wt./8%wt.),
smectites (6%wt./4%wt.), plagioclase (6%wt./1%wt.), gypsum (4%wt./7%wt.), halite (2%wt./17%wt.) and calcite
(2%wt./3%wt.)
Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010
© Author(s) 2011. This work is distributed under the Creative Commons Attribution 3.0 LicenseAirborne lidar and in-situ measurements of aerosols and trace gases were performed in volcanic ash plumes over Europe between Southern Germany and Iceland with the Falcon aircraft during the eruption period of the Eyjafjalla1 volcano between 19 April and 18 May 2010. Flight planning and measurement analyses were supported by a refined Meteosat ash product and trajectory model analysis. The volcanic ash plume was observed with lidar directly over the volcano and up to a distance of 2700 km downwind, and up to 120 h plume ages. Aged ash layers were between a few 100 m to 3 km deep, occurred between 1 and 7 km altitude, and were typically 100 to 300 km wide. Particles collected by impactors had diameters up to 20 μm diameter, with size and age dependent composition. Ash mass concentrations were derived from optical particle spectrometers for a particle density of 2.6 g cm-3 and various values of the refractive index (RI, real part: 1.59; 3 values for the imaginary part: 0, 0.004 and 0.008). The mass concentrations, effective diameters and related optical properties were compared with ground-based lidar observations. Theoretical considerations of particle sedimentation constrain the particle diameters to those obtained for the lower RI values. The ash mass concentration results have an uncertainty of a factor of two. The maximum ash mass concentration encountered during the 17 flights with 34 ash plume penetrations was below 1 mg m-3. The Falcon flew in ash clouds up to about 0.8 mg m-3 for a few minutes and in an ash cloud with approximately 0.2 mg -3 mean-concentration for about one hour without engine damage. The ash plumes were rather dry and correlated with considerable CO and SO2 increases and O3 decreases. To first order, ash concentration and SO2 mixing ratio in the plumes decreased by a factor of two within less than a day. In fresh plumes, the SO2 and CO concentration increases were correlated with the ash mass concentration. The ash plumes were often visible slantwise as faint dark layers, even for concentrations below 0.1 mg m-3. The large abundance of volatile Aitken mode particles suggests previous nucleation of sulfuric acid droplets. The effective diameters range between 0.2 and 3 μm with considerable surface and volume contributions from the Aitken and coarse mode aerosol, respectively. The distal ash mass flux on 2 May was of the order of 500 (240-1600) kgs -1. The volcano induced about 10 (2.5-50) Tg of distal ash mass and about 3 (0.6-23) Tg of SO2 during the whole eruption period. The results of the Falcon flights were used to support the responsible agencies in their decisions concerning air traffic in the presence of volcanic ash.Peer reviewe
Recommended from our members
Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006
During the SAMUM 2006 field campaign in southern Morocco, physical and chemical properties of desert aerosols
were measured. Mass concentrations ranging from 30μgm−3 for PM2.5 under desert background conditions up to
300 000μgm−3 for total suspended particles (TSP) during moderate dust storms were measured. TSP dust concentrations
are correlated with the local wind speed, whereasPM10 andPM2.5 concentrations are determined by advection from
distant sources. Size distributions were measured for particles with diameter between 20 nm and 500μm (parametrizations
are given). Two major regimes of the size spectrum can be distinguished. For particles smaller than 500 nm
diameter, the distributions show maxima around 80 nm, widely unaffected of varying meteorological and dust emission
conditions. For particles larger than 500 nm, the range of variation may be up to one order of magnitude and up to
three orders of magnitude for particles larger than 10μm. The mineralogical composition of aerosol bulk samples was
measured by X-ray powder diffraction. Major constituents of the aerosol are quartz, potassium feldspar, plagioclase,
calcite, hematite and the clay minerals illite, kaolinite and chlorite. A small temporal variability of the bulk mineralogical
composition was encountered. The chemical composition of approximately 74 000 particles was determined by
electron microscopic single particle analysis. Three size regimes are identified: for smaller than 500 nm in diameter, the
aerosol consists of sulphates and mineral dust. For larger than 500 nm up to 50μm, mineral dust dominates, consisting
mainly of silicates, and—to a lesser extent—carbonates and quartz. For diameters larger than 50μm, approximately
half of the particles consist of quartz. Time series of the elemental composition show a moderate temporal variability
of the major compounds. Calcium-dominated particles are enhanced during advection from a prominent dust source in
Northern Africa (Chott El Djerid and surroundings). The particle aspect ratio was measured for all analysed particles.
Its size dependence reflects that of the chemical composition. For larger than 500 nm particle diameter, a median aspect
ratio of 1.6 is measured. Towards smaller particles, it decreases to about 1.3 (parametrizations are given). From the
chemical/mineralogical composition, the aerosol complex refractive index was determined for several wavelengths
from ultraviolet to near-infrared. Both real and imaginary parts show lower values for particles smaller than 500 nm in
diameter (1.55–2.8 × 10−3i at 530 nm) and slightly higher values for larger particles (1.57–3.7 × 10−3i at 530 nm)
- …