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Abstract Many animals spend large parts of their lives in groups. Within such groups,

they need to find efficient ways of dividing available resources between them. This is

often achieved by means of a dominance hierarchy, which in its most extreme linear

form allocates a strict priority order to the individuals. Once a hierarchy is formed, it is

often stable over long periods, but the formation of hierarchies among individuals with

little or no knowledge of each other can involve aggressive contests. The outcome of

such contests can have significant effects on later contests, with previous winners more

likely to win (winner effects) and previous losers more likely to lose (loser effects).

This scenario has been modelled by a number of authors, in particular by Dugatkin. In

his model, individuals engage in aggressive contests if the assessment of their fighting

ability relative to their opponent is above a threshold θ . Here we present a model where

each individual can choose its own value θ . This enables us to address questions such

as how aggressive should individuals be in order to take up one of the first places in the

hierarchy? We find that a unique strategy evolves, as opposed to a mixture of strategies.

Thus, in any scenario there exists a unique best level of aggression, and individuals

should not switch between strategies. We find that for optimal strategy choice, the

hierarchy forms quickly, after which there are no mutually aggressive contests.
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1 Introduction

Very often, animals that share the same territory engage in pairwise aggressive inter-

actions leading to the formation of dominance hierarchies Hand (1986). Here we are

interested in groups of animals that are meeting for the first time and have to engage

in these aggressive interactions in order to divide their resources. In smaller groups

of animals, the hierarchy tends to be linear where one individuals dominates all of

the others, a second individual dominates all of the others in the group except the

top-ranked individual and so on (see Addison and Simmel 1970; Barkan and Strahl

1986; Goessmann et al. 2000; Wilson 1971). In larger groups of animals, the hierar-

chy is more complex, where the position of especially lower-ranked individuals may

be unclear, e.g. in chimpanzees, baboons, hyenas (Kummer 1984; Möller et al. 2006,

2001; Widdig et al. 2001). Some animals are more aggressive than others, and the level

of aggressiveness depends upon many factors such as experience, the value of win-

ning the contest and resource holding potential (RHP) (see e.g. Blanchard et al. 1988;

Blanchard and Blanchard 1977; Moss et al. 1994; Takahashi and Lore 1983; Taylor

1982).In our model, RHP is simply the ability of an individual to win an escalated con-

test (Parker 1974), abstracted away from any particular causal effect. In reality, there

are a large number of elements that determine the RHP. Very broadly, these elements

can be divided into physical attributes, such as size, age and physical strength (intrinsic

factors), and psychological attributes, such as prior experience (extrinsic factors).

In more detail, there are a lot of results demonstrating a strong correlation between

RHP and body size (Alexander 1961; Bridge et al. 2000; Lindström 1992). For exam-

ple, it has been observed that larger animals are more aggressive towards smaller ones

and that they have more chances of winning an encounter (Frey and Miller 1972;

Knights 1987). However, other results show that such physical attributes are not the

only important determinant of RHP. For example, Brown et al. (2006) showed that

37.5 % of the group in house crickets won aggressive interactions, even though they

had smaller body size. In Hofmann and Schildberger (2001), bigger individuals lost

30 % of the aggressive interactions.

Prior experience as well can have an important effect on the RHP of an individual.

For example, if an individual has won more fights than it has lost in the past, it may

increase its potential to win in the future.

The aim of this paper is to explore the relationship between extrinsic factors, in

particular prior experience, and hierarchy formation. Therefore, we assume in our

model that all individuals have identical physical abilities, so that the outcome of an

encounter is significantly determined by past experience (although our results depend

upon only a mechanical updating of RHP after a contest, so it would allow for real

physical as well as psychological changes, too). In particular, we consider so-called

winner and loser effects. The winner effect occurs when winning a previous contest

increases the chances that an animal wins a subsequent contest. The loser effect occurs

when a previous loss similarly increases the chances of defeat in the next contest.

A number of authors have analysed the influence of winner and loser effects on

dominance hierarchy formation (e.g. Bonabeau et al. 1999; Dugatkin 1997; Dugatkin

and Dugatkin 2007; Hemelrijk 2000). The first models were developed by Landau

(Landau 1951a, b). He demonstrated the importance of the winner and loser effects:
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only when extrinsic factors were considered in addition to intrinsic ones, did the

resulting hierarchies resemble those found in nature. Landau considered populations

where winner and loser effects were operating together, but there is evidence that some

groups of animals experience either winner or loser effects only (Bakker et al. 1989;

Bergman et al. 2003; Lindquist and Chase 2009; Schuett 1997). Dugatkin and Dugatkin

(Dugatkin 1997; Dugatkin and Dugatkin 2007) developed a model where these effects

were considered in isolation, or both to be present in a group of 4 individuals. In

Dugatkin (1997), each individual could only knew its own RHP after a win or loss,

but they did not have any information about their opponents strength, except at time

t = 1. He predicted that when only the winner effect is at play, the emerging dominance

hierarchies are linear and the strength of the winner effect is not important. Contrary,

when only the loser effect is present, hierarchies where only the top-ranked individual

is determined are found (the positions of the rest of the group stay unclear). When

both winner and loser effects are present, nonlinear hierarchies emerged where only

the first place, and sometimes the second place, was clear in the group. In Dugatkin and

Dugatkin (2007), each individual was aware of their own RHP and they could make an

imperfect estimate about their opponent’s RHP at each point in time. He concluded that

overestimating or underestimating the opponent’s strength does not have any influence

on linearity: in both cases, linear dominance hierarchies were established.

In Kura et al. (2015), we analysed the temporal dynamic and the average behav-

iour of dominance hierarchy formation for different combinations of winner and loser

effects, using the model developed by Dugatkin (1997). We concluded that it is not

necessary for a group of individuals to have perfect knowledge of each other’s RHP

in order to establish a linear dominance hierarchy; only a little information about

the current RHP estimation of an individual’s opponent is enough to establish a lin-

ear dominance hierarchy. We used different statistical measures such as the overlap

between the distribution of the RHP of each individual over time to check for distin-

guishability between a pair of individuals. The index of linearity was used to measures

how far from linearity each hierarchy is. Furthermore, we considered the question of

how many fights are needed for a dominance hierarchy to be established, and we found

that this number is relatively low.

In Dugatkin (1997) and Dugatkin and Dugatkin (2007) (as well as Kura et al.

2015), each individual had the same fixed level of aggression; they would retreat

for the same excess of the number of wins over the number of losses. In this paper,

we introduce game-theoretical elements in the form of aggressiveness level into this

model. We assume that each individual can choose its own strategy, independent of

their opponent’s strategy. We are particularly interested in determining the appropriate

level of the aggression threshold and exploring whether a unique strategy, or mixture

of strategies, emerges in the population considered. Our model set-up allows us to

answer questions such as under what circumstances should an individual fight more

in order to establish a higher rank in the hierarchy and when should it retreat? We

use a framework similar to the Hawk–Dove model Maynard Smith (1982), where an

individual can choose to either fight or concede, with each individual making its choice

simultaneously. When two individuals choose to fight, they engage in an aggressive

interaction; the winner will increase its RHP by a factor 1 + V1, and the loser will

reduce its RHP by a factor 1−C1. When one individual fights and the other concedes,
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the individual that chooses to fight increases its RHP by a factor 1 + V2 and the

retreating individual has its RHP reduced by a factor 1 − C2. In the case when both

individuals retreat, they have their RHP multiplied by 1−C2. Individuals choose their

own strategies, meaning whether to fight and or to concede in an aggressive interaction

given their history of fights won and lost, from a range of possible strategies. For

each of these possible strategies, we will determine the resulting expected payoff and

conclude whether the chosen strategy is beneficial to the individual or not. We will

analyse two cases: when each individuals choose a strategy that enables them to fight

in all interactions, and when they choose strategies that enable them to fight until

a certain point in time (based upon how many contests they have won or lost) and

retreat afterwards. We will determine the evolutionarily stable strategies (ESSs) for

this fighting game, where an ESS is a strategy that when played by almost all members

of the population cannot be invaded by any other strategy. We will also calculate the

possible stopping times of the game for different strategies and analyse the relationship

between the stopping time and the difference of the number of wins and losses for an

individual.

As explained above, individuals fight for more access to resources and we will

investigate the effects of different payoff functions on the ESSs within our model. In

particular, we compare payoffs which depend upon the level of resource an individual

receives to those which depend upon the proportion of the overall resource that it

receives. The latter payoff function is particularly appropriate when resources are

scarce. Once the dominance hierarchy is established, it is easier for the group to divide

resources between them: the higher the position in the hierarchy, the higher the payoff.

The division of resources has been analysed by different authors (see e.g. Broom and

Ruxton 2001; Keller and Reeve 1994). We will use the concept of reproductive skew

(Broom et al. 2009; Keller and Reeve 1994; Reeve and Keller 2001; Shen and Reeve

2010; Vehrencamp 1983), which refers to the distribution of reproductive rights in

a group of animals. We will use the term more generally to refer to how limited

resources, and hence, payoffs (which are generally proportional to reproductive levels

in evolutionary games) are divided among our group. When the reproductive skew is

high, the division of resources is uneven with the high-ranking individuals obtaining

more resources than the lower-ranking ones (for example, see Drews 1993; Monnin and

Ratnieks 1999; Rood 1980). In contrast, if the reproductive skew is low, the division

of resources is even and all ranks of individuals have similar resource levels (see

Brown 2014; Mangold et al. 2015). Further, we will explore the interplay between all

three game-theoretical elements, Vi , Ci and strategies θx , and analyse whether there

is a general pattern for the ESS when the Vi and Ci are increased (or decreased).

Additionally, we develop a simulation framework to investigate the effect of the group

size on the level of aggression. We note that Andersen et al. (2004) developed an

alternative optimisation-based model to analyse the effect of group size on aggression

level and showed that the theoretical results obtained are supported by experimental

data observed in domesticated pigs; we discuss this in Sect. 6. Lastly, we compare our

theoretical results with experimental evidence which is rather different for different

groups of animals such as birds, farmed animals or fish (see e.g. Andersen et al. 2004;

Bilčık and Keeling 2000; Estévez et al. 1997; Estevez et al. 2007; Kotrschal et al.

1993; Nicol et al. 1999; Syarifuddin and Kramer 1996; Turner et al. 2001).
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2 The Model

We assume a large population of social individuals living together in groups. At the

beginning of the consideration, groups of size N are randomly formed, so that all

individuals are members of a group and we analyse a specific group of N individuals.

Each individual has an RHP value, which, as mentioned in the Introduction, is a

measure of its ability to win an aggressive interaction (cf. Dugatkin 1997; Dugatkin

and Dugatkin 2007) and which is altered by the outcome of each interaction. At the

beginning, all individuals are assigned the same initial RHP, denoted by RHPinitial.

We assume that all individuals know their own RHP and that of any opponent. In each

round t (t = 1, ..., T ), two individuals are randomly chosen to engage in an aggressive

interaction, while the rest of individuals do not engage in any aggressive interactions.

Through time, an individual’s RHP changes due to winning or losing (in reality, it

will be mainly the extrinsic factors than change, but our model could cope with other

eventualities equally well), while a win increases the RHP, a loss decreases it and each

individual keeps track of the changes in their own RHP and that of its opponents. More

precisely, suppose that at time t the two individuals pitted against each other are x and

y. We denote by RHPx,t individual x’s RHP at time t . Individual x can decide to be

aggressive or retreat once it has been chosen and this decision is based on the strategy

θx ≥ 0 which is its aggression threshold.

Individual x fights individual y at this time (plays Hawk) if

RHPx,t

RHPy,t

≥ θx (1)

holds, otherwise it will retreat (play Dove), where RHPy,t and θy are the individual’s

y RHP assessment score at time t and its aggression threshold, respectively. From the

pairwise interaction, we get one of the following outcomes:

1. Both individuals x and y decide to engage in an aggressive interaction and the

probability that x wins is given by

Px,y(t) =
RHPx,t

RHPx,t + RHPy,t

, (2)

and consequently, individual y wins with a probability Py,x (t) = 1 − Px,y(t).

2. One individual engages in the aggressive interaction and the other retreats.

3. Both individuals decide not to fight (which is known as a double kowtow).

After a win, the RHP increases, and after a loss, it decreases. More precisely, if

individual x wins and individual y loses, then they increase and decrease, respectively,

their own RHP as follows:

RHPx,t+1 = (1 + V1)RHPx,t , (3)

RHPy,t+1 = (1 − C1)RHPy,t . (4)
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If individual x wins and individual y retreats, then they increase and decrease, respec-

tively, their own RHP as follows:

RHPx,t+1 = (1 + V2)RHPx,t , (5)

RHPy,t+1 = (1 − C2)RHPy,t . (6)

Equivalent changes to the RHPs apply if individual y wins.

If both individuals retreat (double kowtow), then they decrease their RHPs as fol-

lows:

RHPx,t+1 = (1 − C2)RHPx,t , (7)

RHPy,t+1 = (1 − C2)RHPy,t . (8)

In this model, V1, V2 are proportional increases in RHP and C1, C2 are proportional

decrease in RHP where V1, V2 ≥ 0 and C1, C2 ∈ [0, 1]

The aim of each member of the population is to maximise its payoff at time T . In

the following, we assume that the payoff function is defined as the natural logarithm

of the RHP (which corresponds to the situation of unlimited resources) but consider

in Sect. 3.5 the effects of an alternative payoff function (which corresponds to the

situation of limited resources). Now there are two main reasons for considering the

natural logarithm of the RHP. Firstly, while we want to keep to Dugatkin’s terminology

as much as possible, the multiplicative nature of how the RHP increases means that

RHP values can become large very quickly. If we would assume the expected RHP

as the payoff, then even a minuscule chance of winning enough contests to be the

top individual would be worth almost any risk. Considering the logarithm means that

winning (losing) any contest increases (decreases) the payoff by the same amount

irrespective of the current RHP, which seems reasonable. Secondly, taking the natural

logarithm of the RHP guarantees that the payoffs increase in precisely the same way

as in evolutionary matrix games, and in particular the Hawk–Dove game, which we

use as an analogy in this paper.

This model set-up allows us to track the changes in RHP of all N individuals at

the time points t = 1, . . . , T and therefore to evaluate which strategy θ results in

the highest payoff over time. In this context, the ESS introduced by Maynard (1974)

proves to be an important concept. An ESS is a strategy, that if adopted by a population,

cannot be invaded by any other rare strategy. In general, we can have more than one

ESS. In an N -player game, strategy θx is an ESS if either:

1. E[θx ; θ N−1
x ] > E[θy; θ N−1

x ] or

2. E[θx ; θ N−1
x ] = E[θy; θ N−1

x ] and E[θx , θ
N−2
x , θy] > E[θy, θ

N−2
x , θy],

∀θy �= θx , where E[θx ; θ i
x , θ

N−1−i
y ] is the expected payoff of an individual playing

strategy θx against i individuals playing strategy θx and N − i − 1 individuals playing

strategy θy , respectively Broom et al. (1997).

For Sect. 3, where we consider two-player games only, the ESS definition reduces

to:

1. E[θx , θx ] > E[θy, θx ] or

2. E[θx , θx ] = E[θy, θx ] and E[θx , θy] > E[θy, θy],
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∀θy �= θx , where E[θx , θx ] is the expected payoff of individual x against individual y

with strategies θx and θy , respectively.

3 The Two-Individual Model

For simplicity, in this section we consider groups of two individuals only. This will

allow us to find some analytical results which will give us general insights into the

dynamic of our model. We will then generalise to larger groups in Sect. 4.

3.1 Expected Payoffs When Players Always Fight (θx = θ y = 0)

We assume that both individuals, denoted by x and y, possess the same RHPinitial
values. Further, individuals x and y play the strategies θx = θy = 0, meaning that

both individuals will fight until time T (cf. Eq. 1). In this section and throughout the

paper, we assume V1 = V2 = V , C1 = C , C2 = 0. This implies that winning a

fight and having your opponent retreat has the same effect on the RHP. But contrary

to Dugatkin (1997), we do not assume that losing a fight and retreating has the same

effect on the RHP. This seems plausible as it is similar to the Hawk–Dove model to

which we refer, in the sense that the loss of a fight is like an injury (whether a real injury

or a psychological one). Figure 1 illustrates the possible RHP values of individual x

at times t = 1 and t = 2. For example, the expected payoff of individual x at t = 1,

denoted by E[ln(RHPx,1)] is equal to

E[ln(RHPx,1)] =
1

2
ln(RHPinitial(1 + V )) +

1

2
ln(RHPinitial(1 − C)).

(1-C) 

(1-C) 

Fig. 1 RHP of individual x and individual y at times t = 1 and t = 2 when they both start with the same

RHPinitial and always fight (θx = θy = 0)

123



1266 K. Kura et al.

An individual either wins or loses a fight, and we denote a win (loss) in the kth contest

by jk = 1 ( jk = 0). Thus, at time t individual x has at wins and bt losses which are

given as follows:

at =

t
∑

k=1

jk (9)

and

bt = t −

t
∑

k=1

jk . (10)

The RHP for individual x , having won at contests and lost bt , will be denoted by

Rat ,bt and is given by [cf. equations (3) and (4)]

Rat ,bt =RHPinitial(1 + V )at (1 − C)bt = RHPinitial(1 + V )
∑t

k=1 jk (1 − C)t−
∑t

k=1 jk .

The probability of winning after at wins and bt losses at time t will be denoted by

Wat ,bt , whereas the probability of losing will be denoted by Lat ,bt = 1− Wat ,bt . From

equation (2), we obtain

Wat ,bt =
(1 + V )at (1 − C)bt

(1 + V )at (1 − C)bt + (1 + V )bt (1 − C)at
.

If we consider all combinations of wins and losses and consider ln(RHP), then the

overall expected payoff is given by

E[ln(RHPx,T )] =

1
∑

j1=0

1
∑

j2=0

1
∑

j3=0

....

1
∑

jT =0

ln(RaT ,bT
)

T
∏

i=1

W
ji

aT ,bT
L

1− ji
aT ,bT

. (11)

where aT and bT are given by equations (9) and (10).

3.2 Individuals with General Strategies θx and θ y

In this section, we analyse the expected payoffs for individuals x and y when they

have potentially nonzero and different strategies θx and θy , respectively. We start by

deriving a general criterion for the number of losses necessary so that an individual

retreats. Suppose that at time t individual x has won at contests against individual y

and lost bt . Then, its RHP will be RHPx,t = Rat ,bt . In contrast, individual y has won

bt contests and lost at against individual x resulting in a RHP of RH Py,t = Rbt ,at .

Thus, from equations (3)–(6) we obtain:

Rat ,bt = RHPinitial(1 + V )at (1 − C)bt

and

Rbt ,at = RHPinitial(1 + V )bt (1 − C)at .
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The next interaction between the individuals x and y will result in a fight if equation

(1) holds for both individuals. In other words, the following two equations have to be

satisfied simultaneously

RHPx,t

RHPy,t

=
Rat ,bt

Rbt ,at

= (1 + V )at −bt (1 − C)bt −at =

(

1 + V

1 − C

)at −bt

≥ θx (12)

and

RHPy,t

RHPx,t

=
Rbt ,at

Rat ,bt

= (1 + V )bt −at (1 − C)at −bt =

(

1 + V

1 − C

)bt −at

≥ θy . (13)

Next, we take the logarithm of equations (12) and (13) on both sides and obtain

(at − bt ) ≥
ln(θx )

ln(1 + V ) − ln(1 − C)
(14)

and

(bt − at ) ≥
ln(θy)

ln(1 + V ) − ln(1 − C)
. (15)

We define

dx =
− ln(θx )

ln(1 + V ) − ln(1 − C)
(16)

and

dy =
− ln(θy)

ln(1 + V ) − ln(1 − C)
(17)

where dx and dy are both positive numbers for any pair of individuals which do not

concede immediately. As equations (14) and (15) have to be fullfilled simultaneously,

we obtain

− dx ≤ at − bt ≤ dy . (18)

This means that if the excess of the number of wins over the number of losses is

within [−dx , dy], individuals x and y will engage in a fight. If both individuals start

by fighting and the first condition to not hold is at − bt ≤ dy , then we have a case

where individual y decides to retreat and individual x to fight. After retreating for the

first time, an individual then retreats in every contest until time T . Consequently, after

y has retreated, individual x increases its RHP for every contest. By contrast, if the

first condition to not hold is −dx ≤ at − bt , then individual x decides to retreat and

individual y increases its RHP for every contest. The situation where both individuals

retreat only occurs if this happens at t = 1.

We define the time when individual x retreats by

Ts(x) = min{t ≥ 1 : at − bt < −dx }. (19)

Ts(x)will be called the x-stopping time. The y-stopping time Ts(y) is defined similarly.

Clearly, in any contest exactly one of these values will be finite; the time of the last

contest where both individuals fight is given by the stopping time Ts , where
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Ts = min{Ts(x), Ts(y)}. (20)

Then, the expected payoff E[ln(RHPx,T )] at time T is given by:

E[ln(RHPx,T )] =

1
∑

j1=0

1
∑

j2=0

....

1
∑

jTs =0

ln
[

RaT ,bT
(1 + V )(T −Ts )I1

]

Ts
∏

i=1

W
ji

aT ,bT
L

1− ji
at ,bt

(21)

where

I1 =

{

0 if at − bt < dx

1 if at − bt > dy

and (1 + V )(T −Ts )I1 is the multiplicative increase in RHP that individual x gets after

the stopping time Ts . It follows from inequality (18) and the fact that at − bt is an

integer that all θ values within a certain interval result in the same expected payoff

(for fixed V and C). We denote those intervals of strategy values by [θx,min, θx,sup)

where θx,sup is the value of θx that corresponds to ⌊dx⌋ and θx,min the value of θx

that corresponds to ⌈dx⌉. The intervals are closed at the lower bound and open at the

upper bound and θx,min < θx,sup. We set

k′
x = ⌊dx⌋ =

⌊

− ln(θx,sup)

ln(1 + V ) − ln(1 − C)

⌋

(22)

and obtain

θx,sup =

(

1 − C

1 + V

)k′
x

.

Further, we set kx = ⌈dx⌉. The corresponding strategy value θx for kx is θx,min and

we have

kx = ⌈dx⌉ =

⌈

− ln(θx,min)

ln(1 + V ) − ln(1 − C)

⌉

(23)

which results in

θx,min =

(

1 − C

1 + V

)kx

.

Similarly to the above, for given V and C there is a range of θ values that correspond

to a given k. Importantly, each strategy θ from that range results in the same payoff.

We note, however, that this range changes for different V and C . For simplicity, we

shall assume that individual x chooses the middle value from [θx,min, θx,sup), and this
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strategy will be denoted by θx,rep as the representative strategy of the [θx,min, θx,sup)

range

θx,rep =

(

1 − C

1 + V

)kx
(

2 + V − C

2(1 − C)

)

. (24)

3.3 Stopping Time Ts

The expected payoff E[ln(RHPx,T )] given by equation (21) depends on the stopping

time Ts . In this section, we explore the properties of Ts as defined by equation (20),

in particular its distribution.

To do so, we firstly determine the values of kx and ky for individuals x and y with

strategies θx and θy , respectively. The time when the random process at −bt is equal to

kx or ky represents the stopping time. For instance, individual x would not engage in

aggressive interactions when at −bt ≤ −kx and the stopping time defined in equation

19 can be written alternatively as

Ts(x) = min{t ≥ 1 : at − bt ≤ −kx }. (25)

But which values can the stopping time Ts(x) assume? The earliest possible x-stopping

time is T = kx , i.e. individual has kx consecutive wins from the start of the interaction.

The next possible stopping time will be at kx + 2, where a single win by individual

x within the first kx interactions has to be met by a total of kx + 1 wins by y. In

general, the stopping times for individual x will be given by kx + (2n)n≥0. Conse-

quently, the stopping times for individual y will be given by ky + (2n)n≥0. Thus,

Ts = min{Ts(x), Ts(y)} can assume the following values

Ts =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 : kx = ky = 1

min{kx , ky} + (2n)n≥0 : kx + ky even

max{kx , ky} + n + even numbers in [min{kx , ky}, max{kx , ky}] : kx + ky odd,

min{kx , ky} odd

max{kx , ky} + n + odd numbers in [min{kx , ky}, max{kx , ky}] : kx + ky odd,

min{kx , ky} even

(26)

In summary, the stopping time defines the exact time when one individual starts to

retreat for different strategy combinations. It also gives the number of possible interac-

tions that need to be observed in order to distinguish between a pair of individuals, so

that in our model the second individual will always concede to the first (for a different

interpretation of this concept, see Kura et al. 2015).

Note that it is possible for our model to generate one experience, a winner effect

or a loser effect, without the other. For example, for V > 0 and C = 0 we have a case

when only the winner effect is in place. Tables 5 and 6 show the expected payoffs for

different strategic values when V = 0.1 and C = 0. On the other hand, when C > 0

and V = 0, illustrated by Tables 7 and 8, we have a case when only the loser effect is

operating.
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In the next section, we derive the distribution of Ts for the parameter constellation

V = C = 0.1 (both winner and loser effect are influencing RHP).

3.4 Example: V = C = 0.1

To illustrate the findings of the last sections, we consider an example by assuming

the parameters V = 0.1, C = 0.1 and T = 20. In particular, we calculate the expected

payoffs E[ln(RHPx,20)] for different combinations of strategies θx and θy , determine

the unique ESS and derive the distribution of the stopping time Ts .In this section and

throughout the paper, we will assume that RHPinitial = 10.

Firstly, we determine the representative strategies to kx = 1, 2, 3, 4, 5, 6, 7, 8 by

using equation (24). Note that there is a range of strategies θx that correspond to the

same value of kx and we take the middle one as described in Sect. 3.2. We obtain the

following mappings (the same values apply for individual y as well).

kx = 1 ⇒ θx,rep = 0.91, kx = 2 ⇒ θx,rep = 0.74, kx = 3 ⇒ θx,rep = 0.61, kx = 4 ⇒

θx,rep = 0.50,

kx = 5 ⇒ θx,rep = 0.41, kx = 6 ⇒ θx,rep = 0.33, kx = 7 ⇒ θx,rep = 0.27, kx = 8 ⇒

θx,rep = 0.22.

For this set of strategies, we then calculate the expected payoffs E[ln(RHPx,20)] for

individual x and E[ln(RHPy,20)] for individual y by using equation (21). Table 1 rep-

resent the matrix of payoffs for different combinations of strategies θx and θy .

Now for each strategy, we can find the best response, i.e. for each column of Table

1 we find the highest payoff and use the “diagonal rule ”to find the ESS. The diagonal

rule states that if any value on the diagonal of the matrix of payoffs is larger than

all the values in the same column, then the corresponding pure strategy is an ESS.

We note that for a pure ESS, all our results satisfy ESS condition 1 ; condition 2 is

only achieved when mixtures are present, which we do not get in our example. In this

example, we obtain θ = 0.61, corresponding to k = 3, as the unique ESS. Note that

there is a range of strategies [θ
x,min, θx,sup) = [0.55, 0.67] that corresponds to k = 3.

Thus, any strategy from this range results in the same expected payoff and is therefore

equivalent to our ESS. Lastly, we derive the distribution of the stopping time Ts . For

example, when θx = 0.5 (corresponding to kx = 4) and θy = 0.7 (corresponding to

ky = 2), Ts can only assume the values (ky + 2n)n≥0 because kx + ky = 6 is an even

number [see equation (26)]. But how does this distribution change when kx and ky are

varied? To explore this, we assume that individual x has a strategy θx corresponding

to kx = 1, 2, 3 and his opponent has strategies θy corresponding to ky ∈ [1, 8]. We

choose the value 8 as an upper bound for ky as an arbitrary large cut-off value which

corresponds to small values of θ , but we could have chosen any other high value. Figure

2 shows the distribution functions of the stopping time for various combinations of kx

and ky for V = C = 0.1.

Figures 2 illustrates that a pair of individuals will fight longer for higher values

of kx and ky . The reason behind this is that larger values of k correspond to smaller

strategy values θ , and hence, equation (1) implies that the individuals will fight longer.

In this example, one of the individuals x and y has started retreating before time T , for

most of the possible cases. This means that observing 20 interaction would allow us
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Table 1 The matrix of payoffs where each entry represent the expected payoff E[ln(RHPx,T )] at time T = 20 [calculated by equation (21)] for different strategies θx and θy

ky = 1

(θy = 0.91)

ky = 2

(θy = 0.74)

ky = 3

(θy = 0.61)

ky = 4

(θy = 0.50)

ky = 5

(θy = 0.41)

ky = 6

(θy = 0.33)

ky = 7

(θy = 0.27)

ky = 8

(θy = 0.22)

kx = 1

(θx = 0.91)

3.2000 2.8700 2.7300 2.6500 2.6000 2.5800 2.5600 2.5400

kx = 2

(θx = 0.74)

3.4400 3.0600 2.8700 2.7600 2.7000 2.6600 2.6200 2.6000

kx = 3

(θx = 0.61)

3.5000 3.1000 2.8900 2.7700 2.6900 2.6500 2.6100 2.6000

kx = 4

(θx = 0.50)

3.5100 3.0800 2.8700 2.7400 2.6700 2.6200 2.5600 2.5600

kx = 5

(θx = 0.41)

3.5000 3.0500 2.8400 2.700 2.6200 2.5700 2.5400 2.5200

kx = 6

(θx = 0.33)

3.4600 3.0200 2.7900 2.6600 2.6000 2.5300 2.5000 2.4700

kx = 7

(θx = 0.27)

3.4300 2.9900 2.7700 2.6200 2.5600 2.5000 2.4800 2.4500

kx = 8

(θx = 0.22)

3.4200 2.9500 2.7300 2.6000 2.5100 2.4800 2.4400 2.4100

1
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Fig. 2 The distribution function of the stopping time for the case when V = C = 0.1, ky = 1, 2, . . . , 8

and a kx = 1, b kx = 2, c kx = 3. Note that parts of the distribution functions are overlaid by other

distribution functions, e.g. all lines in (a), include the segment with starting coordinate (1, 0) and ending

coordinate (1,
1

2
)
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to distinguish between the two individuals almost with certainty. As we increase the

values of kx and ky , the probability of retreating before T = 20 is decreased.

3.5 An Alternative Payoff Function

Table 1 shows the expected payoff of individuals x and y after Tmax = 20 possible

interactions using equation (21). In this section, we explore how limited resources

are divided between the two individuals based on an alternative payoff function. We

will use the concept of reproductive skew as discussed in Broom et al. (2009), Keller

and Reeve (1994), Reeve and Keller (2001), Shen and Reeve (2010), Vehrencamp

(1983). In this case, the expected payoff for individual x after 20 interactions is given

by function:

E[θx , θy] = E

[

ln(RHPx,20)

ln(RHPx,20) + ln(RHPy,20)

]

. (27)

Consequently, the expected payoff for individual y is given by function

E[θy, θx ] = E

[

ln(RHPy,20)

ln(RHPx,20) + ln(RHPy,20)

]

.

The results are given in Table 2.

From Table 2, we find that θ = 0.4 (corresponding to k = 5) is the ESS. Comparing

this result with the result obtained from Table 1, we notice that they differ; when using

this alternative payoff function, we obtain k = 5 as the ESS, while for the original

payoff function used in Sect. 3.4, the ESS is k = 3. This differences are related to the

amount of the available resources, in particular whether they are plentiful or limited.

We assume that for plentiful resources, the absolute RHP is more important, but for

scarce resources shared between group members, the relative RHP is the key element.

If an individual needs to maximise the RHP, then it should fight less compared to the

situation where it needs to maximise the division of limited resources. In this latter

case, the individual needs to be more aggressive so that it can win a greater share than

its opponent, since “hurting” its opponent leads directly to improving its proportion

in equation (27).

3.6 How the Expected Payoffs and the Division of Resources Change When

Varying V and C

In this section, we will vary the values of V and fix the value of C (C = 0.1), noting that

different combinations of V and C correspond to different values of k for any given

value of θ . For each of these combinations, we find the ESS (θ and the corresponding

k ) when ln(RHP) is considered as the payoff function and when the alternative payoff

function is used. The results are summarised in Figs. 3 and 4 where we plot the ratio
V
C

with C = 0.1 on the x-axis and the best strategy on the y-axis (optimal k in Fig. 3

and best θ in Fig. 4).

For the case when V = 0 and C > 0, we expect the ESS to be the strategy where an

individual retreats immediately. This is true when ln(RHP) is considered as the payoff
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Table 2 Division of resources for different values of k, when V = C = 0.1

ky = 1

(θy =1)

ky = 2

(θy = 0.7)

ky = 3

(θy = 0.6)

ky = 4

(θy = 0.5)

ky = 5

(θy = 0.4)

ky = 6

(θy = 0.35)

ky = 7

(θy = 0.27)

ky = 8

(θy = 0.23)

kx = 1

(θx = 1)

0.5000 0.4585 0.4417 0.4353 0.4344 0.4354 0.4360 0.4385

kx = 2

(θx = 0.7)

0.5415 0.5000 0.4825 0.4777 0.4765 0.4777 0.4806 0.4825

kx = 3

(θx = 0.6)

0.5583 0.5175 0.5000 0.4941 0.4928 0.4949 0.4973 0.4999

kx = 4

(θx = 0.5)

0.5647 0.5223 0.5059 0.5000 0.4992 0.5013 0.5034 0.5066

kx = 5

(θx = 0.4)

0.5656 0.5235 0.5072 0.5008 0.5000 0.5014 0.5046 0.5077

kx = 6

(θx = 0.35)

0.5646 0.5223 0.5051 0.4987 0.4986 0.5000 0.5026 0.5054

kx = 7

(θx = 0.27)

0.5640 0.5194 0.5027 0.4966 0.4954 0.4974 0.5000 0.5033

kx = 8

(θx = 0.23)

0.5615 0.5175 0.5001 0.4934 0.4923 0.4946 0.4967 0.5000

1
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Fig. 3 The evolutionarily stable strategy k for variable V and fixed C (C = 0.1) for ln(RHP) and alternative

payoff function. When C = 0, the ESS will be the highest possible value of k (C → 0 �⇒ k → ∞)

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ratio V/C

B
e

s
t 

th
e

ta

ln(RHP)

alternative payoff function

Fig. 4 The evolutionarily stable strategy θ for variable V and fixed C (C = 0.1) for ln(RHP) and alternative

payoff function. When C = 0, the ESS will be the highest possible value of k (C → 0 �⇒ k → ∞)

function. When the alternative payoff function is used, we obtain k = 1(θ = 1) as the

ESS (for C = 0.1). Thus, in this case it is best to fight initially to potentially reduce the

RHP of the opponent, as this increases the individual’s payoff function. On the other

hand for C = 0 and V > 0, we obtain k → ∞ as the ESS. This is the expected result as

since there is no cost for losing, it is best to fight until the end of the competition. When
V
C

≤ 4, we obtain lower values of θ as an ESS for the alternative payoff function than

for the payoff function given by ln(RH P). This means that when resources are scarce,

individuals need to be more aggressive in order to get a high payoff. For sufficiently

high
V

C
ratio, (e.g. for V

C
> 4), we obtain the same value of θ as an ESS for both

payoff functions. The corresponding tables showing the expected payoffs for different

combinations of kx and ky when V and C vary are given in Appendix.

4 The N-Individual Model

In Sect. 3, we demonstrated how the expected payoff can be derived analytically for the

situation of two interacting individuals. Generalisations of these results to situations
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with more than two individuals, however, have proven to be analytically intractable.

To nevertheless gain insights into the behaviour of larger groups, we develop a simu-

lation approach which determines the ESS for N interacting individuals. We imagine

a population of 10,000N individuals, which at the start of the game is divided into

10,000 groups of size N at random. Members within each group interact as previously

described, for a total of 200 contests, and record their payoff (this correspond to steps

S1–S2.3 ). The individuals then produce offspring proportional to their payoff to form

a new generation of 10, 000N individuals. This process is repeated for 10, 000 gener-

ations (this corresponds to step S3). The algorithm which generates our approach is

defined as follows.

S1 Initially, the N individuals can choose their strategies from the range

� = [θ1, θ2, . . . , θ10] = [0.1, 0.2, . . . , 1]

with probability p(θ = θk) = 1
10

, k = 1, . . . , 10.

Set i = 0.

S2.0 Set H = [0, 0, . . . , 0] (H has dimension 10) and j = 0.

S2.1 Each of the N individuals chooses a strategy θxi
, i = 1, . . . , N according to

the probability function p(θ = θk).

S2.2 Repeat the following for Tmax = 200 times steps.

Randomly choose two individuals with their strategies θxi
and θx j

out of the N

individuals and update their RHP according to Equations (3)–(6).

S2.3 Update the vector H as follows

H(10θxi
) = H(10θxi

) + ln(RHPxi ,200), i = 1, . . . , N .

Set j = j + 1. If j <10,000 go to S2.0 otherwise to S3.

S3 Update probability function p(θ = θk) as follows

p(θ = θk) =
H(10θk)

10
∑

k=1

H(10θk)

.

Set i = i + 1. If i <10,000 go to S2.0 otherwise the simulation is finished.

The outcome of this algorithm is the probability vector p(θ = θk), and in most cases,

the probability mass will be concentrated in a single strategy θk which represents the

ESS. When this is not the case, the mean value of the strategies at the end of the

simulation (i.e. after 10,000 generations) will be considered as the ESS. In order to

analyse the accuracy of the simulation algorithm, we consider the same parameter

constellation as in Sect. 3.4, namely N = 2 and V = C = 0.1, and determine the ESS.

We obtain p(θ = 0.6) = 1 and conclude that θ = 0.6 is the ESS, which falls within

the [0.55, 0.67] range; the result that we obtained from equation (21). We considered

other values of V and C as well, and in all situations, analytical and simulation results

coincided.
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Table 3 The ESS value of θ for different combinations of V and C

C = 0.025 C = 0.05 C = 0.075 C = 0.1 C = 0.125 C = 0.15

V = 0.01 0.9400 0.9900 1.0000 1.0000 1.0000 1.0000

V = 0.02 0.8800 0.9000 0.9200 0.9500 0.9700 0.9900

V = 0.03 0.7000 0.8100 0.9000 0.9000 0.9200 0.9400

V = 0.04 0.6000 0.8000 0.8000 0.8700 0.9000 0.9100

V = 0.05 0.4900 0.7000 0.7900 0.8000 0.8000 0.9000

V = 0.06 0.4000 0.6200 0.7000 0.7700 0.8000 0.8000

V = 0.07 0.3700 0.6000 0.6900 0.7000 0.7600 0.8000

V = 0.08 0.3000 0.5000 0.6000 0.6900 0.7000 0.7000

V = 0.09 0.2900 0.5000 0.6000 0.6000 0.6500 0.6500

V = 0.1 0.2600 0.4400 0.5100 0.6000 0.6000 0.6900

V = 0.11 0.2100 0.4000 0.5000 0.5300 0.6000 0.6100

V = 0.12 0.2000 0.4000 0.5000 0.5100 0.6000 0.6000

V = 0.15 0.2000 0.3000 0.4000 0.5000 0.5000 0.5100

V = 0.18 0.1400 0.2900 0.3000 0.4000 0.4300 0.4400
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Fig. 5 The ESS theta for different combinations of V and C

4.1 Example: Population Size N = 4

Now we consider a group of N = 4 individuals and use the simulation algorithm

described above to determine the ESSs. We do this for different combinations of V

and C , and the results are shown in Table 3 and Fig. 5.

The ESS values show that when the value of C is increased for a fixed value of V , the

value of θ is also increased. This means that the individuals fight less as the cost of

injury, for example, is increased. On the other hand, when V is increased for a fixed C ,

we notice that the value of θ is decreased, and thus, individuals are fighting longer. If

V = C , then the value of the ESS decreases when V and C are simultaneously increased

by the same factor. This is supported by the results of V = C = 0.05, V = C = 0.1 and

V = C = 0.15 which have respective ESSs 0.6, 0.49 and 0.45.
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Table 4 The ESS values for different combinations of V and C for N = 2 and N = 4

N = 2 N = 4

V = 0.1, C = 0.2 [0.53, 0.73] 0.9

V = 0, 1, C = 0.1 [0.55, 0.67] 0.6

V = 0.2, C = 0.1 [0.32, 0.42] 0.5

V = 0.3, C = 0.1 [0.23, 0.33] 0.35

For N = 2, there is a range of strategies θ that correspond to the same critical value of the excess number

of defeats k leading to concession. This range is determined by (23)

Next we compare the ESSs when we increase the group size from 2 to 4 individ-

uals. In Table 4, we show the values of the ESS for these two group sizes for some

combinations of V and C . We conclude that as the group size is increased the values

of strategies θ are also increased. This implies less aggressiveness in larger groups.

Hence, in larger group sizes it is best to fight less than it is in smaller populations,

because an individual will suffer a larger loss in RHP for fighting longer and potentially

losing against three individuals.

5 Comparison of Strategies

In the above sections, we have derived how the ESS for different values of C and V

can be calculated. Now we explore whether the knowledge about the ESS in a specific

situation characterised by V and C allows us to infer the ESS for a related situation

with αV and αC (for sufficiently small α). Similarly to the Hawk–Dove game, the

ratio V
C

might be the most important aspect regarding the expected payoffs (if V < C

the ESS of the Hawk–Dove game is simply play Hawk with probability p = V
C

), as

opposed to specific values of V and C . This means that if we know the ESS for small

values of V and C , we can also calculate the ESS for αV and αC . The following holds

dx =
− ln(θx )

ln(1 + V ) − ln(1 − C)
≈

− ln(θx )

V − (−C)
=

− ln(θx )

V + C
⇒ (28)

dx (V + C) = − ln(θx )

where θx is the strategy for individual x . If we multiply V and C by α, we obtain:

dx =
− ln(θ ′

x )

ln(1 + αV ) − ln(1 − αC)
≈

− ln(θ ′
x )

αV + αC
=

− ln(θ ′
x )

α(V + C)
⇒ (29)

αdx (V + C) = − ln(θ ′
x )

where θ ′
x is the strategy of individual x when V and C become αV and αC , respectively.

Now from equations (28) and (29) we obtain

ln(θ ′
x ) = α ln(θx ) ⇒

θ ′
x = θα

x . (30)
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This means that if for a sequence of wins and losses individual x retreats following

strategy θx , it will retreat for the same sequence following strategy θ ′
x = θα

x when V

and C are exchanged for αV and αC , respectively (assuming that changing the value

of V using α in this way does not affect the choice of kx ). Thus, if only the ratio V
C

matters for finding the ESS and θx is the ESS for V and C, then θ ′
x will be the ESS

for αV and αC . We illustrate this point with an example. We assume the parameter

constellation N = 2, V = 0.02, C = 0.04 and α = 3
2

and use the simulation algorithm

given in Sect. 4 to determine the ESS. We obtain θx = 0.91 (corresponding to kx = 2) as

the ESS for V = 0.02, C = 0.04 and θx = 0.87 (corresponding to kx = 2) for αV = 0.03

and αC = 0.06. When we use formula (30) and take θx = 0.91 as the ESS baseline

(V = 0.02, C = 0.04), we obtain θ ′
x = 0.91

3
2 = 0.868 as the new ESS which is close to

the 0.87 value that we get from the simulations. Thus, the results from these simulations

support formula (30). We have also analysed different values of α = 2, 1
2
, 1

5
, 5 and we

obtain ESS corresponding to kx = 2 for all the cases. We can conclude that equation

(30) gives a good approximation for the ESS. This is always true when we have small

values of V and C; however, there are some cases when it works less well, principally

where V, C (or α which will lead to large V or C in the comparative model) is large.

We note that the larger V and C , and the bigger T , the more unrealistic multiplying the

RHP by a constant after every contest is. On the other hand the smaller T , there are

more times when we cannot distinguish between a pair of individuals as neither of them

has retreated. Thus, a realistic model should only contain relatively small V and C .

6 Discussion

In this paper, we have introduced game-theoretical elements to the winner–loser model

developed in Dugatkin (Dugatkin 1997; Dugatkin and Dugatkin 2007). We considered

a group of individuals that are characterised by their fighting ability score (their RHP)

and a strategy θ that indicates whether an individual would engage in an aggressive

interaction or retreat. All individuals were assumed to possess the same RHP initially.

We have developed a model that determines the expected payoff and ESS for different

group sizes and payoffs, involving V and C , in such a population.

In the first part of this paper, we derived analytical results for a group of two

individuals for the expected payoff and find the ESS, using ln(RH P) as the payoff

function, which correspond to situations with unlimited resources. In order to calculate

the expected payoff for individual x with strategy θx , we first found the condition when

this individual would retreat, represented by k. The variable k describes the critical

difference between the number of wins and losses, below which individual x retreats.

Given that a win increases the value of RHP, the value of k corresponds to the difference

in RHP and thus only the individuals with a high RHP relative to its opponent risk

engaging in an agonistic interaction to obtain more access to the available resources.

We showed that there is a range of strategies θx that correspond to the same value of

k, meaning that they will give the same payoff. Furthermore different combinations

of V and C yield different ranges of θx for any given value of k.

We illustrated this analytical part with an example where we assumed V = C = 0.1.

We found the expected payoff for different strategies θ ≥ 0. In this case, we obtained a
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pure ESS which was achieved for k = 3, corresponding to the θ range [0.55, 0.67]. Any

strategy from this range gives the same payoff and is an ESS. We next varied V and C

and saw the effect of this variations on the expected payoff and the ESS. As expected,

if V is increased for a fixed C , the individuals will fight more, corresponding to lower

values of θ . On the other hand, if C is increased for a fixed V , we get bigger values of

θ as an ESS. This means that individuals will fight less as C is increased.

We also used the idea of the reproductive skew (Broom et al. 2009; Keller and

Reeve 1994; Reeve and Keller 2001; Shen and Reeve 2010; Vehrencamp 1983) to

study how scarce resources are divided between a pair of individuals by using an

alternative payoff function given in equation (27). When comparing the results with

the ones obtained for the original payoff function, we observe smaller values of θ as

an ESS. This means that in this case individuals need to be more aggressive in order

to obtain a larger share of the available resources.

While in our model, and in those of Dugatkin (1997) and Dugatkin and Dugatkin

(2007), linear hierarchies are generally formed efficiently when (i) winner and loser

effects are both present, (ii) only the winner effect or (iii) only the loser effect is

present, the three models give clearly distinct predictions. With only the winner effect

present, individuals in our model (for optimal strategy choice) and that of Dugatkin

(1997) will continue fighting indefinitely, whereas in Dugatkin and Dugatkin (2007)

individuals start fighting, but eventually contests cease. With only the loser effect

present, individuals would give up immediately in our model (at least for the plentiful

resources case defined by payoff function (11)), would give up after the first loss in

the model of Dugatkin (1997), and would fight for some longer period in the model

of Dugatkin and Dugatkin (2007). These differences in the results of the three models

are rooted in the modelling assumptions. In Dugatkin (1997), there is no strategic

choice and individuals do not know their opponent’s RHP; in Dugatkin and Dugatkin

(2007), there is no strategic choice, but they do know their opponent’s RHP, and in our

model, there is strategic choice and their opponent’s RHP is known. Thus, Dugatkin

and Dugatkin (2007) can be thought of as an intermediate model between the other

two. However, the predictions of our model are closer to that of Dugatkin (1997) than

Dugatkin and Dugatkin (2007) and we would argue that these are more realistic.

Other authors have considered alternative game-theoretical models of dominance

hierarchy formation. A good recent survey which raises some interesting questions

and suggestions for further modelling is Mesterton-Gibbons et al. (2016). We shall

discuss two such models. Van Doorn and co-workers Doorn et al. (2003) analysed

the evolution of dominance hierarchies by assuming that individuals are identical in

ability throughout the time of their interaction, and so while their strategic choices

depend upon past results, the actual probability of winning a contest depends upon the

strategic choices of individuals, rather than their actual abilities. This is an example

of what Maynard Smith Maynard Smith (1982) called an uncorrelated asymmetry (as

opposed to a correlated asymmetry, as in our model). They found several evolutionary

equilibria, one of them was the “dominance” equilibrium with the winner and loser

effect where previous winners were more likely to take part in aggressive interactions

and previous losers less likely to be aggressive. He also found a paradoxical equilibria

where the higher position was occupied by the loser of an aggressive interaction than

the winner. These results are very similar to the owner–intruder game Maynard Smith
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(1982) where paradoxical convention-based outcomes can occur. They then extended

this model to larger group sizes Doorn et al. (2003), where the individuals still had

limited information about previous fights. Similar as in the two-player model, several

evolutionary equilibria were found, one being with the winner and loser effect. The

assumptions and outcomes are thus rather different to our model.

Fawcett and Johnstone (2010) developed a model to analyse the level of aggression

where each individual differed in strength, but where they had no information about

this difference. They predicted that the level of aggression is related to the amount of

information that an individual has about prior contests. While the young individuals

should be more aggressive as they are not sure about their fighting ability, the older

one are not. They have knowledge of prior experience, and they retreat after a series of

losses. Although the mechanisms differ, the actual way that the populations evolve is

quite similar to ours. In their model, there are real differences between individuals, but

the individuals start with no knowledge and learn over time; in our model, individuals

have varying probabilities of being able to win a contest, which change (perhaps

due to psychological factors) over time. In each case, after a time it is clear which

individuals are the better ones, and the level of aggressive interactions declines, as

more individuals play the more passive strategy. We note that in their model, the

eventual division into mainly aggressive strong individuals and mainly passive weak

individuals is dependent upon an intermediate number of strong/ weak individuals and

that this divide would not happen for all population divisions.

In each of the strategic models discussed above (Fawcett and Johnstone 2010; Doorn

et al. 2003 and Doorn et al. 2003, in addition to ours), individuals face a potentially long

sequence of contests where they have two options at each step. Thus, in the same way

as in games such as the classical iterated prisoner’s dilemma Axelrod (1984), there is

a vast array of potential strategies. Each model reduces the dimensions of this strategy

space in different ways . In the models of Doorn et al. (2003), Doorn et al. (2003),

individuals were constrained to have a memory only of the latest interaction with an

individual and so could base their play only on the results of this latest interaction

(from the iterated prisoner’s dilemma “tit for tat” is such a strategy). Fawcett and

Johnstone (2010) allow individuals to know their performance from all past contests,

but allow them only to condition play on the total number of contests encountered,

together with the number of wins in these contests. Our model behaves in a similar

way to that of Fawcett and Johnstone (2010), basing strategy on the RHP, which in

turn depends directly upon the number of won and lost contests of the participating

individuals.

Similar results to those from our model concerning aggression levels have been

found in experimental settings. Kotrschal et al. Kotrschal et al. (1993) performed a

feeding experiment with greylag geese. Grained food was given in high, medium and

low density. The geese were fed twice daily, and the level of aggression was recorded.

They found a low number of agonistic interactions in the high food density setting and

an increase in those aggressive interactions when the food density was decreased. Nie

et al. Nie et al. (2013) conducted feeding experiments with varying levels of predation

with root voles. They considered four treatments by combining different levels of

predation and food supply (i.e. (no predation, food), (predation, food), (predation, no

food), (no predation, no food)). They observed higher levels of aggressiveness in the

123



1282 K. Kura et al.

groups treated with unfavourable conditions such as (predation, no food) compared to

groups treated with (no predation, food). When the groups were treated with (predation,

food) and (no predation, no food), the level of aggression observed was intermediate.

These findings support our results that if resources are scarce, then an individual needs

to be more aggressive.

An important concept related to the expected payoff is that of the stopping time.

The stopping time is defined as the first time when one of the two individuals hits its

stopping value of k. It gives a guideline for how many agonistic interactions we need

to observe in a pair of individuals before one retreats. After hitting the stopping time,

an individual would then always retreat afterwards. We showed in our example that

twenty possible interactions is enough for an individual to retreat in almost all cases.

Note that if Tmax is relatively larger than the stopping time, the continued increase in

the winner’s RHP after the stopping time is unrealistic. If, however, Tmax is smaller

than the stopping time, it is more difficult to distinguish between a pair of individuals

in terms of their ranks in the hierarchy.

Analytical results can be derived for a group of two individuals, but for larger

group sizes those derivations become effectively intractable. To explore the behaviour

of larger group sizes, in particular to find the ESS, we developed in the second part of

the paper a simulation approach. Analysing a group of four individuals, we found that

the value of the ESS is increased when V is increased (for a fixed C), and by contrast,

the value of the ESS is decreased when C is increased (for a fixed V ). Comparing the

values of ESS for a group of two individuals with the ones obtained for a group of

four individuals leads to the conclusion that individuals should be less aggressive (i.e.

fight less) in larger groups.

While this result is commonly observed in behavioural experiments, there are exper-

imental settings leading to contradictory conclusions. For example, Nicol et al. Nicol

et al. (1999) conducted a feeding experiment with Isa brown birds. They analysed the

behaviour of the birds in groups of four different sizes (72, 168, 264 and 368). The

birds were fed twice a day, and the number of aggressive pecking interactions were

recorded. The results suggested a higher level of aggression in the smallest group (72)

compared to the larger groups (168, 264, 368). Further, Anderson et al. Andersen et al.

(2004) compared their model predictions (larger group sizes result in lower aggression

levels) with results from an experiment with crossbred pigs. They considered three

groups of 6, 12 and 24 pigs (which had not interacted with each other previously) which

were put into pens and the space per individual was kept the same. There was one

feeder per six pigs, and they were fed on ‘Format Start’ every morning. The aggres-

sive interactions in each group were then recorded. It was observed that the level

of aggression decreased with increasing group size. This result was also supported

by further experiments Estevez et al. (2007), Estévez et al. (1997), Syarifuddin and

Kramer (1996) Turner et al. (2001). However, Bilvci et al. Bilčık and Keeling (2000)

observed the aggressive behaviour in a feeding experiment with groups of 15, 30, 60

and 120 Hisex white hens and noticed higher level of aggression in larger groups of

birds than in the smaller ones.

Summarising, we presented a game-theoretical model which determines the evolu-

tionarily stable aggression level in a populations of N individuals and different payoff

functions, involving V and C , within a winner–loser framework. Within a group, we
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found that the population evolves to a unique aggression threshold, indicating that

relative to their strength, all individuals adopt the same decision rule against whom to

fight. Typically, the hierarchy is established quickly, with aggressive fights happening

only in the early contests. Applied to real-world situations, this points to the crucial

importance of the first few fights for hierarchy formation. Later fights only deter-

mine the position of lower-ranked individuals. While higher values of C for losing

an aggressive interaction (keeping the value of V constant) lead to lower aggression

levels in the population, the reverse is true for increasing the value V for winning an

aggressive interaction (keeping C constant): the higher the value of V , the higher is the

aggression level in the population. Further, we predict lower aggression levels in larger

populations. Our results are largely supported by experimental evidence so that we

conclude that the introduction of game-theoretical elements to winner–loser models

provides a further step towards a realistic description of aggressive interactions.
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source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Expected Payoffs for Different V and C

In this section we show the expected payoffs for different combinations of kx and ky

where both the ln(RH P) and alternative payoff function are considered as payoffs.

See Tables (5, 6, 7, 8, 9, 10, 11, 12, 13, and 14).

Table 5 Expected payoffs for different values of k when V = 0.1, C = 0

ky = 1

(θy = 1)

ky = 2

(θy = 0.9)

ky = 3

(θy = 0.8)

ky = 4

(θy = 0.7)

ky = 5

(θy = 0.65)

ky = 6

(θy = 0.6)

ky = 25

(θy = 0.1)

kx = 1

(θx = 1)

3.2560 2.8414 2.8414 2.7754 2.7392 2.7131 2.6645

kx = 2

(θx = 0.9)

3.5456 3.2550 3.1092 3.0271 2.9705 2.9417 2.8767

kx = 3

(θx = 0.8)

3.6699 3.4022 3.2517 3.1682 3.1168 3.0786 3.0138

kx = 4

(θx = 0.7)

3.7360 3.4843 3.3432 3.2572 3.1991 3.1643 3.0995

kx = 5

(θx = 0.65)

3.7721 3.5409 3.3946 3.3123 3.2588 3.2175 3.1514

kx = 6

(θx = 0.6)

3.7983 3.5697 3.4328 3.3471 3.2939 3.2570 3.1855

kx = 25

(θx = 0.1)

3.8469 3.6347 3.4976 3.4119 3.3600 3.3259 3.2551
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Table 6 Division of resources for different values of k when V = 0.1, C = 0

ky = 1

(θy = 1)

ky = 2

(θy = 0.9)

ky = 3

(θy = 0.8)

ky = 4

(θy = 0.7)

ky = 5

(θy = 0.65)

ky = 6

(θy = 0.6)

ky = 25

(θy = 0.1)

kx = 1

(θx = 1)

0.500 0.4555 0.4364 0.4262 0.4207 0.4167 0.4092

kx = 2

(θx = 0.9)

0.5445 0.500 0.4775 0.4649 0.4562 0.4518 0.4418

kx = 3

(θx = 0.8)

0.5636 0.5225 0.4994 0.4866 0.4787 0.4728 0.4629

kx = 4

(θx = 0.7)

0.5738 0.5351 0.5134 0.500 0.4913 0.4860 0.4760

kx = 5

(θx = 0.65)

0.5793 0.5438 0.5213 0.5087 0.500 0.4941 0.4840

kx = 6

(θx = 0.6)

0.5833 0.5482 0.5272 0.5140 0.5059 0.500 0.4892

kx = 25

(θx = 0.1)

0.5908 0.5582 0.5371 0.5240 0.5160 0.5108 0.5000

Table 7 Expected payoffs for different values of k when V = 0, C = 0.1

ky = 0

(θy = 1.2)

ky = 1

(θy = 1)

ky = 2

(θy = 0.9)

ky = 3

(θy = 0.8)

ky = 4

(θy = 0.7)

ky = 5

(θy = 0.6)

ky = 22

(θy = 0.1)

kx = 0

(θx = 1.2)

2.3026 2.3026 2.3026 2.3026 2.3026 2.3026 2.3026

kx = 1

(θx = 1)

2.3026 2.2500 2.2122 2.1559 2.1156 2.0843 2.0052

kx = 2

(θx = 0.9)

2.3026 2.2099 2.1723 2.0648 2.0038 1.9601 1.8634

kx = 3

(θx = 0.8)

2.3026 2.1452 2.0539 1.9020 1.8218 1.7661 1.6553

kx = 4

(θx = 0.7)

2.3026 2.0961 1.9798 1.8064 1.7194 1.6621 1.5486

kx = 5

(θx = 0.6)

2.3026 2.0508 1.9208 1.7315 1.6421 1.5854 1.4706

kx = 22

(θx = 0.1)

2.3026 1.8927 1.7268 1.5113 1.4190 1.3606 1.2500
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Table 8 Division of resources for different values of k when V = 0, C = 0.1

ky = 0

(θy = 1.2)

ky = 1

(θy = 1)

ky = 2

(θy = 0.9)

ky = 3

(θy = 0.8)

ky = 4

(θy = 0.7)

ky = 5

(θy = 0.6)

ky = 22

(θy = 0.1)

kx = 0

(θx =1.2)

0.500 0.500 0.500 0.500 0.500 0.500 0.500

kx = 1

(θx = 1)

0.500 0.500 0.5004 0.5019 0.5038 0.5068 0.5293

kx = 2

(θx = 0.9)

0.500 0.4996 0.500 0.5020 0.5049 0.5084 0.5362

k = 3

(θx = 0.8)

0.500 0.4981 0.4980 0.500 0.5035 0.5081 0.5395

kx = 4

(θx = 0.7)

0.500 0.4962 0.4951 0.4965 0.500 0.5048 0.5364

kx = 5

(θx = 0.6)

0.500 0.4932 0.4916 0.4919 0.4952 0.500 0.5317

kx = 22

(θx = 0.1)

0.500 0.4707 0.4638 0.4605 0.4636 0.4683 0.5000

Table 9 Expected payoffs for different values of k when V = 0.2, C = 0.1

ky = 0

(θy = 1.2)

ky = 1

(θy = 0.9)

ky = 2

(θy = 0.7)

ky = 3

(θy = 0.5)

ky = 4

(θy = 0.4)

ky = 5

(θy = 0.3)

ky = 9

(θy = 0.1)

kx = 0

(θx = 1.2)

2.3026 2.3026 2.3026 2.3026 2.3026 2.3026 2.3026

kx = 1

(θx = 0.9)

5.9490 4.0724 3.5544 3.3444 3.2392 3.2011 3.1203

kx = 2

(θx = 0.7)

5.9490 4.4956 3.9443 3.6854 3.5594 3.4934 3.4014

kx = 3

(θx = 0.5)

5.9490 4.6207 4.0597 3.7925 3.6494 3.5800 3.4715

kx = 4

(θx = 0.4)

5.9490 4.6521 4.0743 3.8035 3.6629 3.5895 3.4778

kx = 5

(θx = 0.3)

5.9490 4.6299 4.0573 3.7795 3.6393 3.5616 3.4574

kx = 9

(θx = 0.1)

5.9490 4.5454 3.9244 3.6488 3.5102 3.4255 3.3109
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Table 10 Division of resources for different values of k when V = 0.2, C = 0.1

ky = 0

(θy = 1.2)

ky = 1

(θy = 0.94)

ky = 2

(θy = 0.7)

ky = 3

(θy = 0.5)

ky = 4

(θy = 0.4)

ky = 5

(θy = 0.3)

ky = 9

(θy = 0.1)

kx = 0

(θx = 1.2)

0.500 0.2790 0.2790 0.2790 0.2790 0.2790 0.2790

kx = 1

(θx = 0.9)

0.7210 0.500 0.4430 0.4233 0.4161 0.4161 0.4227

kx = 2

(θx = 0.7)

0.7210 0.5570 0.500 0.4781 0.4712 0.4701 0.4805

kx = 3

(θx = 0.5)

0.7210 0.5767 0.5219 0.500 0.4923 0.4916 0.5012

kx = 4

(θx = 0.4)

0.7210 0.5839 0.5288 0.5077 0.500 0.4991 0.5084

kx = 5

(θx = 0.3)

0.7210 0.5834 0.5299 0.5084 0.5009 0.500 0.5104

kx = 9

(θx = 0.1)

0.7210 0.5773 0.5195 0.4988 0.4916 0.4896 0.5000

Table 11 Expected payoffs for different values of k when V = 0.1, C = 0.2

ky = 0

(θy = 1.2)

ky = 1

(θy = 1)

ky = 2

(θy = 0.70)

ky = 3

(θy = 0.50)

ky = 4

(θy = 0.30)

ky = 5

(θy = 0.25)

ky = 8

(θy = 0.10)

kx = 0

(θx = 1.2)

2.3026 2.3026 2.3026 2.3026 2.3026 2.3026 2.3026

kx = 1

(θx = 1)

4.2088 3.1454 2.8027 2.6514 2.5755 2.5237 2.4678

kx = 2

(θx = 0.70)

4.2088 3.2896 2.8714 2.6631 2.5416 2.4852 2.4037

kx = 3

(θx = 0.50)

4.2088 3.2705 2.8019 2.565 2.4378 2.3715 2.2812

kx = 4

(θx = 0.30)

4.2088 3.2019 2.7000 2.4429 2.3217 2.2399 2.1442

kx = 5

(θx = 0.25)

4.2088 3.1383 2.5824 2.3190 2.1796 2.1203 2.0265

kx = 8

(θx = 0.10)

4.2088 2.9289 2.2914 2.0099 1.8699 1.8030 1.7182
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Table 12 Division of resources for different values of k when V = 0.1, C = 0.2

ky = 0

(θy = 1.2)

ky = 1

(θy = 1)

ky = 2

(θy = 0.70)

ky = 3

(θy = 0.50)

ky = 4

(θy = 0.30)

ky = 5

(θy = 0.25)

ky = 8

(θy = 0.10)

kx = 0

(θx = 1.2)

0.5000 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536

kx = 1

(θx = 1)

0.6464 0.5000 0.4630 0.4554 0.4600 0.4679 0.5091

kx = 2

(θx = 0.70)

0.6464 0.5370 0.5000 0.4938 0.5006 0.5171 0.5786

kx = 3

(θx = 0.50)

0.6464 0.5446 0.5062 0.5000 0.5092 0.5268 0.5936

kx = 4

(θx = 0.30)

0.6464 0.5400 0.4994 0.4905 0.5000 0.5177 0.5860

kx = 5

(θx = 0.25)

0.6464 0.5321 0.4829 0.4732 0.4823 0.5000 0.5684

kx = 8

(θx = 0.10)

0.6464 0.4909 0.4214 0.4064 0.4140 0.4316 0.5000

Table 13 Expected payoffs for different values of k when V = 0.3, C = 0.1

ky = 0

(θy = 1.2)

ky = 1

(θy = 0.85)

ky = 2

(θy = 0.59)

ky = 3

(θy = 0.41)

ky = 4

(θy = 0.28)

ky = 5

(θy = 0.19)

ky = 6

(θy = 0.13)

kx = 0

(θx = 1.2)

2.3026 2.3026 2.3026 2.3026 2.3026 2.3026 2.3026

kx = 1

(θx = 0.85)

7.5500 4.8750 4.1779 3.9227 3.8359 3.7927 3.7710

kx = 2

(θx = 0.59)

7.5500 5.4765 4.7500 4.4620 4.3284 4.2858 4.2275

kx = 3

(θx = 0.41)

7.5500 5.6512 4.9101 4.9000 4.4783 4.4089 4.3710

kx = 4

(θx = 0.28)

7.5500 5.6705 4.9720 4.6375 4.5023 4.4298 4.4038

kx = 5

(θx = 0.19)

7.5500 5.6573 4.9114 4.6229 4.4937 4.4200 4.3725

kx = 6

(θx = 0.13)

7.5500 5.6304 4.9107 4.5955 4.4477 4.3944 4.3500
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Table 14 Division of resources for different values of k when V = 0.3, C = 0.1

ky = 0

(θy = 1.2)

ky = 1

(θy = 0.85)

ky = 2

(θy = 0.59)

ky = 3

(θy = 0.41)

ky = 4

(θy = 0.28)

ky = 5

(θy = 0.19)

ky = 6

(θy = 0.13)

kx = 0

(θx = 1.2)

0.5000 0.2337 0.2337 0.2337 0.2337 0.2337 0.2337

kx = 1

(θx = 0.85)

0.7663 0.5000 0.4342 0.4131 0.4089 0.4088 0.4104

kx = 2

(θx = 0.59)

0.7663 0.5658 0.5000 0.4783 0.4711 0.4727 0.4714

kx = 3

(θx = 0.41)

0.7663 0.5869 0.5217 0.5000 0.4936 0.4926 0.4940

kx = 4

(θx = 0.28)

0.7663 0.5911 0.5289 0.5064 0.5000 0.4986 0.5016

kx = 5

(θx = 0.19)

0.7663 0.5912 0.5273 0.5074 0.5014 0.5000 0.5007

kx = 6

(θx = 0.13)

0.7663 0.5896 0.5286 0.5060 0.4984 0.4993 0.5000
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