101 research outputs found

    Pattern recognition receptors as key players in adrenal gland dysfunction during sepsis

    Get PDF
    Background: Undergoing systemic inflammation, the innate immune system releases excessive proinflammatory mediators, which finally can lead to organ failure. Pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) and NOD-like receptors (NLRs), form the interface between bacterial and viral toxins and innate immunity. During sepsis, patients with diagnosed adrenal gland insufficiency are at high risk of developing a multiorgan dysfunction syndrome, which dramatically increases the risk of mortality. To date, little is known about the mechanisms leading to adrenal dysfunction under septic conditions. Here, we investigated the sepsis-related activation of the PRRs, cell inflammation, and apoptosis within adrenal glands. Methods: Two sepsis models were performed: the polymicrobial sepsis model (caecal ligation and puncture (CLP)) and the LTA-induced intoxication model. All experiments received institutional approval by the Regierungspräsidium Darmstadt. CLP was performed as previously described [1], wherein one-third of the caecum was ligated and punctured with a 20-gauge needle. For LTA-induced systemic inflammation, TLR2 knockout (TLR2-/-) and WT mice were injected intraperitoneally with pure LTA (pLTA; 1 mg/kg) or PBS for 2 hours. To detect potential direct adrenal dysfunction, mice were additionally injected with adrenocorticotropic hormone (ACTH; 100 μg/kg) 1 hour after pLTA or PBS. Adrenals and plasma samples were taken. Gene expressions in the adrenals (rt-PCR), cytokine release (multiplex assay), and the apoptosis rate (TUNEL assay) within the adrenals were determined. Results: In both models, adrenals showed increased mRNA expression of TLR2 and TLR4, various NLRs, cytokines as well as inflammasome components, NADPH oxidase subunits, and nitric oxide synthases (data not shown). In WT mice, ACTH alone had no effect on inflammation, while pLTA or pLTA/ACTH administration showed increased levels of the cytokines IL-1β, IL-6, and TNFα. TLR2-/- mice indicated no response as expected (Figure 1, left). Interestingly, surviving CLP mice showed no inflammatory adrenal response, whereas nonsurvivors had elevated cytokine levels (Figure 1, right). Additionally, we identified a marked increase in apoptosis of both chromaffin and steroid-producing cells in adrenal glands obtained from mice with sepsis as compared with their controls (Figure 2). ... Conclusion: Taken together, sepsis-induced activation of the PRRs may contribute to adrenal impairment by enhancing tissue inflammation, oxidative stress and culminate in cellular apoptosis, while mortality seems to be associated with adrenal inflammation

    Adrenal Gland Microenvironment and Its Involvement in the Regulation of Stress-Induced Hormone Secretion during Sepsis

    Full text link
    Survival of all living organisms depends on maintenance of a steady state of homeostasis, which process relies on its ability to react and adapt to various physical and emotional threats. The defense against stress is executed by the hypothalamic-pituitary-adrenal axis and the sympathetic-adrenal medullary system. Adrenal gland is a major effector organ of stress system. During stress, adrenal gland rapidly responds with increased secretion of glucocorticoids (GCs) and catecholamines into circulation, which hormones, in turn, affect metabolism, to provide acutely energy, vasculature to increase blood pressure, and the immune system to prevent it from extensive activation. Sepsis resulting from microbial infections is a sustained and extreme example of stress situation. In many critical ill patients, levels of both corticotropin-releasing hormone and adrenocorticotropin, the two major regulators of adrenal hormone production, are suppressed. Levels of GCs, however, remain normal or are elevated in these patients, suggesting a shift from central to local intra-adrenal regulation of adrenal stress response. Among many mechanisms potentially involved in this process, reduced GC metabolism and activation of intra-adrenal cellular systems composed of adrenocortical and adrenomedullary cells, endothelial cells, and resident and recruited immune cells play a key role. Hence, dysregulated function of any of these cells and cellular compartments can ultimately affect adrenal stress response. The purpose of this mini review is to highlight recent insights into our understanding of the adrenal gland microenvironment and its role in coordination of stress-induced hormone secretion

    Is there a role for the adrenal glands in long COVID?

    Full text link
    The symptoms of long COVID and chronic adrenal insufficiency have striking similarities. Therefore, we aim to raise awareness of assessing adrenal function in patients with long COVID

    Praktische Empfehlungen zum Screening und Management von Funktionsstörungen der Nebennierenrinde bei einer akuten SARS-CoV-2-Infektion

    Full text link
    Erkrankungen der Nebennierenrinde erfordern im Rahmen der Severe-acute-respiratory-syndrome-coronavirus-2(SARS-CoV-2)-Pandemie eine besondere Aufmerksamkeit. Zum einen können SARS-CoV-2-Infektionen sich auch extrapulmonal manifestieren und endokrine Störungen – insbesondere im Bereich der Nebennierenrinde – verursachen. Zum anderen sind Patienten mit einer vorbestehenden Nebennierenrindeninsuffizienz oder einem Hyperkortisolismus durch eine schwerwiegende Infektion wie etwa mit SARS-CoV‑2 besonders gefährdet, zusätzliche Komplikationen oder einen schwerwiegenderen Verlauf einer akuten SARS-CoV-2-Infektion mit erhöhter Mortalität zu erleiden. Insbesondere bei hämodynamisch instabilen Patienten mit SARS-CoV-2-Infektion müssen deshalb auch Erkrankungen der Nebennieren differenzialdiagnostisch erwogen und gegebenenfalls abgeklärt werden, falls diese nicht bereits anamnestisch bekannt sind. Weiterhin kann auch die Therapie einer SARS-CoV-2-Infektion mit hohen Glukokortikoiddosen über einen längeren Zeitraum eine sekundäre Nebennierenrindeninsuffizienz verursachen. Wir stellen hier deshalb eine Praxisempfehlung zur Erkennung und Therapie von Nebennierenfunktionsstörungen bei Patient*innen mit SARS-CoV-2-Infektion vor. = Diseases of the adrenal cortex require particular attention during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Firstly, SARS-CoV‑2 infections can give rise to extrapulmonary manifestations and cause endocrine disorders, particularly in the adrenal cortex. Furthermore, patients with pre-existing insufficiency of the adrenal cortex or hypercortisonism are particularly at risk from a severe infection such as SARS-CoV‑2, to suffer from additional complications or a more severe course of a SARS-CoV‑2 infection with a higher mortality. Especially in hemodynamically unstable patients with a SARS-CoV‑2 infection, diseases of the adrenal glands should also be considered in the differential diagnostics and if necessary clarified, if this is not already known. Prolonged treatment of patients with a SARS-CoV‑2 infection with regimens containing high doses of glucocorticoids can also result in a secondary adrenal insufficiency. In order to address these special aspects, some practical recommendations for the diagnostic and therapeutic management of functional disorders of the adrenal glands in patients with a SARS-CoV‑2 infection are therefore presented

    Clinical improvement of Long-COVID is associated with reduction in autoantibodies, lipids, and inflammation following therapeutic apheresis

    Get PDF
    In the aftermath of the COVID-19 pandemic, we are witnessing an unprecedented wave of post-infectious complications. Most prominently, millions of patients with Long-Covid complain about chronic fatigue and severe post-exertional malaise. Therapeutic apheresis has been suggested as an efficient treatment option for alleviating and mitigating symptoms in this desperate group of patients. However, little is known about the mechanisms and biomarkers correlating with treatment outcomes. Here, we have analyzed in different cohorts of Long-Covid patients specific biomarkers before and after therapeutic apheresis. In patients that reported a significant improvement following two cycles of therapeutic apheresis, there was a significant reduction in neurotransmitter autoantibodies, lipids, and inflammatory markers. Furthermore, we observed a 70% reduction in fibrinogen, and following apheresis, erythrocyte rouleaux formation and fibrin fibers largely disappeared as demonstrated by dark field microscopy. This is the first study demonstrating a pattern of specific biomarkers with clinical symptoms in this patient group. It may therefore form the basis for a more objective monitoring and a clinical score for the treatment of Long-Covid and other postinfectious syndromes

    Absence of Type I Interferon Autoantibodies or Significant Interferon Signature Alterations in Adults With Post-COVID-19 Syndrome

    Get PDF
    Genetic defects in the interferon (IFN) system or neutralizing autoantibodies against type I IFNs contribute to severe COVID-19. Such autoantibodies were proposed to affect post-COVID-19 syndrome (PCS), possibly causing persistent fatigue for >12 weeks after confirmed SARS-CoV-2 infection. In the current study, we investigated 128 patients with PCS, 21 survivors of severe COVID-19, and 38 individuals who were asymptomatic. We checked for autoantibodies against IFN-α, IFN-β, and IFN-ω. Few patients with PCS had autoantibodies against IFNs but with no neutralizing activity, indicating a limited role of type I IFNs in PCS pathogenesis. In a subset consisting of 28 patients with PCS, we evaluated IFN-stimulated gene activity and showed that it did not correlate with fatigue. In conclusion, impairment of the type I IFN system is unlikely responsible for adult PCS

    Immune-neuroendocrine and metabolic disorders in human and experimental T. cruzi infection: New clues for understanding Chagas disease pathology

    Get PDF
    Studies in mice undergoing acute Trypanosoma cruzi infection and patients with Chagas disease, led to identify several immune-neuroendocrine disturbances and metabolic disorders. Here, we review relevant findings concerning such abnormalities and discuss their possible influence on disease physiopathology.Fil: González, Florencia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Inmunología Clinica y Experimental de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología Clinica y Experimental de Rosario; ArgentinaFil: Villar, Silvina Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Inmunología Clinica y Experimental de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología Clinica y Experimental de Rosario; ArgentinaFil: Pacini, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Inmunología Clinica y Experimental de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología Clinica y Experimental de Rosario; ArgentinaFil: Bottasso, Oscar Adelmo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Inmunología Clinica y Experimental de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología Clinica y Experimental de Rosario; ArgentinaFil: Perez, Ana Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Inmunología Clinica y Experimental de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Médicas. Instituto de Inmunología Clinica y Experimental de Rosario; Argentin

    Common and specific downstream signaling targets controlled by Tlr2 and Tlr5 innate immune signaling in zebrafish

    Get PDF
    BACKGROUND: Although the responses to many pathogen associated molecular patterns (PAMPs) in cell cultures and extracted organs are well characterized, there is little known of transcriptome responses to PAMPs in whole organisms. To characterize this in detail, we have performed RNAseq analysis of responses of zebrafish embryos to injection of PAMPs in the caudal vein at one hour after exposure. We have compared two ligands that in mammals have been shown to specifically activate the TLR2 and TLR5 receptors: Pam3CSK4 and flagellin, respectively. RESULTS: We identified a group of 80 common genes that respond with high stringency selection to stimulations with both PAMPs, which included several well-known immune marker genes such as il1b and tnfa. Surprisingly, we also identified sets of 48 and 42 genes that specifically respond to either Pam3CSK4 or flagellin, respectively, after a comparative filtering approach. Remarkably, in the Pam3CSK4 specific set, there was a set of transcription factors with more than 2 fold-change, as confirmed by qPCR analyses, including cebpb, fosb, nr4a1 and egr3. We also showed that the regulation of the Pam3CSK4 and flagellin specifically responding sets is inhibited by knockdown of tlr2 or tlr5, respectively. CONCLUSIONS: Our studies show that Pam3CSK4 and flagellin can stimulate the Tlr2 and Tlr5 signaling pathways leading to common and specific responses in the zebrafish embryo system. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1740-9) contains supplementary material, which is available to authorized users

    Role of Toll-Like Receptors and Inflammation in Adrenal Gland Insufficiency

    Get PDF
    Adrenal gland insufficiency – the clinical manifestation of deficient production or action of adrenal steroids – is a life-threatening disorder. Among many factors which can predispose to primary adrenal failure, an autoimmune adrenalitis and infectious agents play a major role. The initial host defense against bacterial infections is executed primarily by the pattern recognition receptors, e.g. Toll-like receptors (TLRs), expressed in cells from the innate immune system. Upon activation, TLRs have been found to regulate various levels of innate and adaptive immunity as well as control tissue inflammation. TLRs are implicated in adrenal cell turnover and steroidogenesis during inflammation. Therefore, TLRs play a crucial role in the activation of adrenal inflammation mediating adrenal gland dysfunction during septicemia.Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
    • …
    corecore