26 research outputs found

    Quality Improvement: A guide for services

    Get PDF
    This guide provides information for clinicians from organisations and services participating in PCOC to use their reports and the suite of PCOC quality improvement tools for continuous improvement, and to demonstrate improvement in patient and family/carer outcomes

    Toward Comprehensive Analysis of the Galectin Network in Chicken: Unique Diversity of Galectin-3 and Comparison of its Localization Profile in Organs of Adult Animals to the Other Four Members of this Lectin Family

    Get PDF
    18 pags, 11 figs, 2 tabs. -- Additional Supporting Information may be found in the online version of this articleCharacterization of all members of a gene family established by gene divergence is essential to delineate distinct or overlapping expression profiles and functionalities. Their activity as potent modulators of diverse physiological processes directs interest to galectins (endogenous lectins with β-sandwich fold binding β-galactosides and peptide motifs), warranting their study with the long-term aim of a comprehensive analysis. The comparatively low level of complexity of the galectin network in chicken with five members explains the choice of this organism as model. Previously, the three proto-type chicken galectins CG-1A, CG-1B, and CG-2 as well as the tandem-repeat-type CG-8 had been analyzed. Our study fills the remaining gap to determine gene structure, protein characteristics and expression profile of the fifth protein, that is, chimera-type chicken galectin-3 (CG-3). Its gene has a unique potential to generate variants: mRNA production stems from two promoters, alternative splicing of the form from the second transcription start point (tsp) can generate three mRNAs. The protein with functional phosphorylation sites in the N-terminus generated by transcription from the first tsp (tsp1CG-3) is the predominant CG-3 type present in adult tissues. Binding assays with neoglycoproteins and cultured cells disclose marked similarity to properties of human galectin-3. The expression and localization profiles as well as proximal promoter regions have characteristic features distinct from the other four CGs. This information on CG-3 completes the description of the panel of CGs, hereby setting the stage for detailed comparative analysis of the entire CG family, e.g., in embryogenesis. © 2011 Wiley-Liss, Inc.Spanish Ministry of Science and Innovation Grant number: BFU2009-10052; Grant sponsor: CIBER of Respiratory Diseases (CIBERES) (ISCII

    Prototype chicken galectins revisited: characterization of a third protein with distinctive hydrodynamic behaviour and expression pattern in organs of adult animals

    Get PDF
    Prototype galectins are versatile modulators of cell adhesion and growth via their reactivity to certain carbohydrate and protein ligands. These functions and the galectins' marked developmental regulation explain their attractiveness as models to dissect divergent evolution after gene duplication. Only two members have so far been assumed to constitute this group in chicken, namely the embryonic muscle/liver form {C-16 or CLL-I [16 kDa; chicken lactose lectin, later named CG-16 (chicken galectin-16)]} and the embryonic skin/intestine form (CLL-II or C-14; later named CG-14). In the present study, we report on the cloning and expression of a third prototype CG. It has deceptively similar electrophoretic mobility compared with recombinant C-14, the protein first isolated from embryonic skin, and turned out to be identical with the intestinal protein. Hydrodynamic properties unusual for a homodimeric galectin and characteristic traits in the proximal promoter region set it apart from the two already known CGs. Their structural vicinity to galectin-1 prompts their classification as CG-1A (CG-16)/CG-1B (CG-14), whereas sequence similarity to mammalian galectin-2 gives reason to refer to the intestinal protein as CG-2. The expression profiling by immunohistochemistry with specific antibodies discerned non-overlapping expression patterns for the three CGs in several organs of adult animals. Overall, the results reveal a network of three prototype galectins in chicken. © The Authors

    A profile of patients receiving palliative care in Victoria for July – December 2019

    Get PDF
    The Palliative Care Outcomes Collaboration (PCOC) is a national program that aims to improve the quality and outcomes of palliative care in Australia. This is achieved via a standardised clinical language that supports a national data collection. This report provides a high level profile of 8,032 patients who received palliative care in Victoria during July to December 2019 and had their pain, symptom, family / carer and psychological / spiritual issues assessed as part of routine clinical care

    Carbamate-Linked Lactose : Design of Clusters and Evidence for Selectivity to Block Binding of Human Lectins to (Neo)Glycoproteins with Increasing Degree of Branching and to Tumor Cells

    No full text
    Various pathogenic processes are driven by protein(lectin)-glycan interactions, especially involving β-galactosides at branch ends of cellular glycans. These emerging insights fuel the interest to design potent inhibitors to block lectins. As a step toward this aim, we prepared a series of ten mono- to tetravalent glycocompounds with lactose as a common headgroup. To obtain activated carbonate for ensuing carbamate formation, conditions for the facile synthesis of pure isomers from nomerically unprotected lactose were identified. To probe for the often encountered intrafamily diversity of human lectins, we selected representative members from the three subgroups of adhesion/growth-regulatory galectins as receptors. Diversity of the glycan display was accounted for by using four (neo)glycoproteins with different degrees of glycan branching as matrices in solid-phase assays. Cases of increased inhibitory potency of lactose clusters compared to free lactose were revealed. Extent of relative inhibition was not directly associated with valency in the glycocompound and depended on the lectin type. Of note for screening protocols, efficacy of blocking appeared to decrease with increased degree of glycan branching in matrix glycoproteins. Binding to tumor cells was impaired with selectivity for galectins-3 and -4. Representative compounds did not impair growth of carcinoma cells up to a concentration of 5 mM of lactose moieties (valence-corrected value) per assay. The reported bioactivity and the delineation of its modulation by structural parameters of lectins and glycans set instructive examples for the further design of selective inhibitors and assay procedures

    Synthetic Mucin-Like Glycopeptides as Versatile Tools to Measure Effects of Glycan Structure/Density/Position on the Interaction with Adhesion/Growth-Regulatory Galectins in Arrays

    Get PDF
    Functional pairing of cellular glycoconjugates with tissue lectins is a highly selective process, whose determinative factors have not yet been fully delineated. Glycan structure and modes of presentation, that is, its position and density, can contribute to binding, as different members of a lectin family can regulate degrees of responsiveness to these factors. Using a peptide repeat sequence motif of the glycoprotein mucin-1, the principle of introducing synthetic (glyco) peptides with distinct variations in these three parameters to an array-based screening of tissue lectins is illustrated. Interaction profiles of seven adhesion/growth-regulatory galectins cover the range from intense signals with core 2 pentasaccharides and core 1 binding for galectins-3 and -5 to a lack of binding for galectin-1 and also the galectin-related protein, which was included as a negative control. Remarkably, the two tandem-repeat-type galectins-4 and -8 were distinguished by core 1 sialylation, as the two separated domains were. These results encourage further synthetic elaboration of the glycopeptide library and testing of the network of natural galectins and rationally engineered variants of the lectins
    corecore