

Title	Synthetic Mucin-Like Glycopeptides as Versatile Tools to Measure Effects of Glycan Structure/Density/Position on the Interaction with Adhesion/Growth-Regulatory Galectins in Arrays
Author(s)	Artigas, Gerard; Hinou, Hiroshi; Garcia-Martin, Fayna; Gabius, Hans-Joachim; Nishimura, Shin-Ichiro
Citation	Chemistry-an asian journal, 12(1), 159-167 https://doi.org/10.1002/asia.201601420
Issue Date	2017-01-03
Doc URL	http://hdl.handle.net/2115/68039
Rights	This is the peer reviewed version of the following article: G. Artigas, H. Hinou, F. Garcia-Martin, HJ. Gabius, SI. Nishimura, Synthetic Mucin-Like Glycopeptides as Versatile Tools to Measure Effects of Glycan Structure/Density/Position on the Interaction with Adhesion/Growth-Regulatory Galectins in Arrays, Chem. Asian J. 2017, 12, 159-167, which has been published in final form at 10.1002/asia.201601420. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	Supporting Information.pdf

Supporting Information

Synthetic Mucin-Like Glycopeptides as Versatile Tools to Measure Effects of Glycan Structure/Density/Position on the Interaction with Adhesion/Growth-Regulatory Galectins in Arrays

Gerard Artigas,^[a] Hiroshi Hinou,^{*[a, b]} Fayna Garcia-Martin,^[a] Hans-Joachim Gabius,^{*[c]} and Shin-Ichiro Nishimura^{*[a, b]}

asia_201601420_sm_miscellaneous_information.pdf

 Table S1. Sequences of the MUC1-derived (glyco)peptide and glyco amino acid used in this work.

1	5-oxo-hexanoyl-PEG-GVTSAPDTRPAPGSTAPPAHGVT-NH ₂
2	5-oxo-hexanoyl-PEG-GVT(GalNAc α 1 \rightarrow)SAPDTRPAPGSTAPPAHGVT-NH ₂
3	5-oxo-hexanoyl-PEG-GVTS(GalNAc $\alpha 1 \rightarrow$)APDTRPAPGSTAPPAHGVT-NH ₂
4	5-oxo-hexanoyl-PEG-GVTSAPDT(GalNAc α 1 \rightarrow)RPAPGSTAPPAHGVT-NH ₂
5	5-oxo-hexanoyl-PEG-GVTSAPDTRPAPGS(GalNAc α 1 \rightarrow)TAPPAHGVT-NH ₂
6	5-oxo-hexanoyl-PEG-GVTSAPDTRPAPGST(GalNAc $\alpha 1 \rightarrow$)APPAHGVT-NH ₂
7	5-oxo-hexanoyl-PEG-GVT(Gal β (1→3)GalNAc α 1→)SAPDTRPAPGSTAPPAHGVT-NH ₂
8	5-oxo-hexanoyl-PEG-GVTS(Gal β (1→3)GalNAc α 1→)APDTRPAPGSTAPPAHGVT-NH ₂
9	5-oxo-hexanoyl-PEG-GVTSAPDT(Gal β (1→3)GalNAc α 1→)RPAPGSTAPPAHGVT-NH ₂
10	5-oxo-hexanoyl-PEG-GVTSAPDTRPAPGS(Gal β (1→3)GalNAc α 1→)TAPPAHGVT-NH ₂
11	5-oxo-hexanoyl-PEG-GVTSAPDTRPAPGST(Gal β (1 \rightarrow 3)GalNAc α 1 \rightarrow)APPAHGVT-NH ₂
12	5-oxo-hexanoyl-PEG-GVT(Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)]GalNAc α 1 \rightarrow)SAPDTRPAPGSTAPPAHGVT-NH ₂
13	5-oxo-hexanoyl-PEG-GVTS(Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)]GalNAc α 1 \rightarrow)APDTRPAPGSTAPPAHGVT-NH ₂
14	5-oxo-hexanoyl-PEG-GVTSAPDT(Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)]GalNAc α 1 \rightarrow)RPAPGSTAPPAHGVT-NH ₂

15	5-oxo-hexanoyl-PEG-GVTSAPDTRPAPGS(Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)]GalNAc α 1						
15	\rightarrow)TAPPAHGVT-NH ₂						
	5-oxo-hexanoyl-PEG-GVTSAPDTRPAPGST(Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)]GalNAc α						
16	1→)APPAHGVT-NH ₂						
17	5-oxo-hexanoyl-PEG-GVT(GalNAc α 1 \rightarrow)S(GalNAc α 1 \rightarrow						
1/)APDTRPAPGSTAPPAHGVT-NH ₂						
10	5-oxo-hexanoyl-PEG-GVT(GalNAc α 1 \rightarrow)SAPDT(GalNAc α 1 \rightarrow						
18)RPAPGSTAPPAHGVT-NH ₂						
10	5-oxo-hexanoyl-PEG-GVT(GalNAc α 1 \rightarrow)SAPDTRPAPGST(GalNAc α 1 \rightarrow						
19)APPAHGVT-NH ₂						
•	5-oxo-hexanoyl-PEG-GVTS(GalNAc α 1 \rightarrow)APDT(GalNAc α 1 \rightarrow						
20)RPAPGSTAPPAHGVT-NH ₂						
	5-oxo-hexanoyl-PEG-GVTS(GalNAc α 1 \rightarrow)APDTRPAPGST(GalNAc α 1 \rightarrow						
21)APPAHGVT-NH ₂						
22	5-oxo-hexanoyl-PEG-GVTSAPDT(GalNAc α 1 \rightarrow)RPAPGST(GalNAc α 1 \rightarrow						
)APPAHGVT-NH ₂						
22	5-oxo-hexanoyl-PEG-GVTSAPDTRPAPGS(GalNAc α 1 \rightarrow)T(GalNAc α 1 \rightarrow						
23)APPAHGVT-NH ₂						
24	5-oxo-hexanoyl-PEG-GVTS(GalNAc $\alpha 1 \rightarrow$)APDT(GalNAc $\alpha 1 \rightarrow$)RPAPGS(GalNAc $\alpha 1$						
24	\rightarrow)TAPPAHGVT-NH ₂						
25	5-oxo-hexanoyl-PEG-GVTS(GalNAc $\alpha \ 1 \rightarrow$)APDT(Gal $\beta \ (1 \rightarrow 3)$ GalNAc $\alpha \ 1 \rightarrow$						
25)RPAPGS(GalNAc $\alpha \rightarrow$)TAPPAHGVT-NH ₂						
26	5-oxo-hexanoyl-PEG-T(GalNAc $\alpha \rightarrow$)-NH ₂						
27	5-oxo-hexanoyl-PEG-S(GalNAc α 1 \rightarrow)-NH ₂						
28	5-oxo-hexanoyl-PEG-T(Gal β (1 \rightarrow 3)GalNAc α 1 \rightarrow)-NH ₂						
29	5-oxo-hexanoyl-PEG-S(Gal β (1→3)GalNAc α 1→)-NH ₂						
30	5-oxo-hexanoyl-PEG-T(Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)]GalNAc α 1 \rightarrow)-NH ₂						

325-oxo-hexanoyl-PPAHGVTSAPDTRPAPGSTA-NH2335-oxo-hexanoyl-PPAHGVTSAPDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)GalNAc α 1 \rightarrow)RPAPGSTA-NH2345-oxo-hexanoyl-PPAHGVT(GalNAc α 1 \rightarrow)S(Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)[Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)GalNAc α 1 \rightarrow)RPAPGS(Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)[Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc $\alpha \rightarrow$)T(GalNAc α 1 \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)[Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)[Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)[Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(ACDT)	31	5-oxo-hexanoyl-PEG-S(Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)]GalNAc α 1 \rightarrow)-NH ₂
335-oxo-hexanoyl-PPAHGVTSAPDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)GalNAc α 1 \rightarrow)RPAPGSTA-NH2345-oxo-hexanoyl-PPAHGVT(GalNAc α 1 \rightarrow)S(Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)[Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)GalNAc α 1 \rightarrow)RPAPGS(Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)[Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)T(GalNAc α 1 \rightarrow)A-NH25-oxo-hexanoyl-PPAHGVTS(Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)[Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)[GalNAc α 1 \rightarrow)RPAPGS(Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)[Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc α \rightarrow)TA-NH2	32	5-oxo-hexanoyl-PPAHGVTSAPDTRPAPGSTA-NH ₂
$\begin{array}{l} \textbf{33} \\ \textbf{34} \end{array} \\ \begin{array}{l} \textbf{37} \\ \textbf{34} \end{array} \\ \begin{array}{l} \textbf{5} \text{-oxo-hexanoyl-PPAHGVT(GalNAc } \alpha \ 1 \rightarrow) \textbf{S}(Gal \ \beta \ (1 \rightarrow 3)[GlcNAc \ \beta \ (1 \rightarrow 6)[Neu5Ac \ \alpha \ 2 \rightarrow 3)Gal \ \beta \ (1 \rightarrow 3)]GalNAc \ \alpha \ 1 \rightarrow 3) \textbf{36} \end{array} \\ \begin{array}{l} \textbf{34} \\ \textbf{34} \end{array} \\ \begin{array}{l} \textbf{36} \\ \textbf{37} \\$	22	5-oxo-hexanoyl-PPAHGVTSAPDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)GalNAc α 1 \rightarrow
$34 \begin{bmatrix} 5 - 0xo - hexanoyl-PPAHGVT(GalNAc \alpha 1 \rightarrow)S(Gal \beta (1 \rightarrow 3)[GlcNAc \beta (1 \rightarrow 6)[Neu5Ac \alpha (2 \rightarrow 3)Gal \beta (1 \rightarrow 3)]GalNAc \alpha \rightarrow)APDT(Neu5Ac \alpha (2 \rightarrow 3)Gal \beta (1 \rightarrow 3)GalNAc \alpha 1 \rightarrow) RPAPGS(Gal \beta (1 \rightarrow 3)[GlcNAc \beta (1 \rightarrow 6)[Neu5Ac \alpha (2 \rightarrow 3)Gal \beta (1 \rightarrow 3)]GalNAc \alpha \rightarrow)T(GalNAc \alpha 1 \rightarrow)A-NH_2 \\ 5 - 0xo - hexanoyl-PPAHGVTS(Gal \beta (1 \rightarrow 3)[GlcNAc \beta (1 \rightarrow 6)[Neu5Ac \alpha (2 \rightarrow 3)Gal \beta (1 \rightarrow 3)]GalNAc \alpha -)APDT(Neu5Ac \alpha (2 \rightarrow 3)Gal \beta (1 \rightarrow 3)GalNAc \alpha 1 \rightarrow)RPAPGS(Gal \beta (1 \rightarrow 3)[GlcNAc \beta (1 \rightarrow 6)[Neu5Ac \alpha (2 \rightarrow 3)Gal \beta (1 \rightarrow 3)]GalNAc \alpha -)APDT(Neu5Ac \alpha (2 \rightarrow 3)Gal \beta (1 \rightarrow 3)]GalNAc \alpha -)TA-NH_2 \\ \end{bmatrix}$	33)RPAPGSTA-NH ₂
$ \begin{array}{l} \textbf{34} \\ (2 \rightarrow 3) \text{Gal } \beta \ (1 \rightarrow 3)] \text{GalNAc } \alpha \rightarrow) \text{APDT}(\text{Neu5Ac } \alpha \ (2 \rightarrow 3) \text{Gal } \beta \ (1 \rightarrow 3) \text{GalNAc } \alpha \ 1 \rightarrow \\) \text{RPAPGS}(\text{Gal } \beta \ (1 \rightarrow 3)] \text{GlcNAc } \beta \ (1 \rightarrow 6) [\text{Neu5Ac } \alpha \ (2 \rightarrow 3) \text{Gal } \beta \ (1 \rightarrow 3)] \text{GalNAc } \alpha \rightarrow \\) \text{T}(\text{GalNAc } \alpha \ 1 \rightarrow) \text{A-NH}_2 \\ \end{array} \\ \begin{array}{l} \textbf{5} \text{-oxo-hexanoyl-PPAHGVTS}(\text{Gal } \beta \ (1 \rightarrow 3) [\text{GlcNAc } \beta \ (1 \rightarrow 6) [\text{Neu5Ac } \alpha \ (2 \rightarrow 3) \text{Gal } \beta \ (1 \rightarrow 3)] \text{GalNAc } \alpha \rightarrow \\ \textbf{35} \ \ (1 \rightarrow 3) [\text{GalNAc } \alpha \rightarrow) \text{APDT}(\text{Neu5Ac } \alpha \ (2 \rightarrow 3) \text{Gal } \beta \ (1 \rightarrow 3) \text{GalNAc } \alpha \rightarrow) \text{RPAPGS}(\text{Gal } \beta \ (1 \rightarrow 3) [\text{GlcNAc } \beta \ (1 \rightarrow 6) [\text{Neu5Ac } \alpha \ (2 \rightarrow 3) \text{GalNAc } \alpha \rightarrow) \text{RPAPGS}(\text{Gal } \beta \ (1 \rightarrow 3) [\text{GlcNAc } \beta \ (1 \rightarrow 6) [\text{Neu5Ac } \alpha \ (2 \rightarrow 3) \text{GalNAc } \alpha \rightarrow) \text{TA-NH}_2 \end{array} $	34	5-oxo-hexanoyl-PPAHGVT(GalNAc α 1 \rightarrow)S(Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)[Neu5Ac α
$\begin{array}{l} 34 \\) \text{RPAPGS}(\text{Gal } \beta \ (1 \rightarrow 3)[\text{GlcNAc } \beta \ (1 \rightarrow 6)[\text{Neu5Ac } \alpha \ (2 \rightarrow 3)\text{Gal } \beta \ (1 \rightarrow 3)]\text{GalNAc } \alpha \rightarrow \\) \text{T}(\text{GalNAc } \alpha \ 1 \rightarrow)\text{A-NH}_2 \\ \\ 35 5\text{-oxo-hexanoyl-PPAHGVTS}(\text{Gal } \beta \ (1 \rightarrow 3)[\text{GlcNAc } \beta \ (1 \rightarrow 6)[\text{Neu5Ac } \alpha \ (2 \rightarrow 3)\text{Gal } \beta \ (1 \rightarrow 3)]\text{GalNAc } \alpha \rightarrow \\) \text{APDT}(\text{Neu5Ac } \alpha \ (2 \rightarrow 3)\text{Gal } \beta \ (1 \rightarrow 3)\text{GalNAc } \alpha \ 1 \rightarrow)\text{RPAPGS}(\text{Gal } \beta \ (1 \rightarrow 3)[\text{GlcNAc } \beta \ (1 \rightarrow 6)[\text{Neu5Ac } \alpha \ (2 \rightarrow 3)\text{Gal } \beta \ (1 \rightarrow 3)]\text{GalNAc } \alpha \rightarrow \\) \text{TA-NH}_2 \end{array}$		(2→3)Gal β (1→3)]GalNAc α →)APDT(Neu5Ac α (2→3)Gal β (1→3)GalNAc α 1→
)T(GalNAc α 1 \rightarrow)A-NH ₂ 5-oxo-hexanoyl-PPAHGVTS(Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)[Neu5Ac α (2 \rightarrow 3)Gal β (1 35 \rightarrow 3)]GalNAc $\alpha \rightarrow$)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)GalNAc α 1 \rightarrow)RPAPGS(Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)[Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc $\alpha \rightarrow$)TA-NH ₂) RPAPGS(Gal β (1→3)[GlcNAc β (1→6)[Neu5Ac α (2→3)Gal β (1→3)]GalNAc $\alpha \rightarrow$
5-oxo-hexanoyl-PPAHGVTS(Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)[Neu5Ac α (2 \rightarrow 3)Gal β (1 35 \rightarrow 3)]GalNAc $\alpha \rightarrow$)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)GalNAc α 1 \rightarrow)RPAPGS(Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)[Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc $\alpha \rightarrow$)TA-NH ₂)T(GalNAc $\alpha 1 \rightarrow$)A-NH ₂
35 \rightarrow 3)]GalNAc $\alpha \rightarrow$)APDT(Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)GalNAc α 1 \rightarrow)RPAPGS(Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)[Neu5Ac α (2 \rightarrow 3)Gal β (1 \rightarrow 3)]GalNAc $\alpha \rightarrow$)TA-NH ₂		5-oxo-hexanoyl-PPAHGVTS(Gal β (1 \rightarrow 3)[GlcNAc β (1 \rightarrow 6)[Neu5Ac α (2 \rightarrow 3)Gal β (1
$(1\rightarrow 3)$ [GlcNAc β $(1\rightarrow 6)$ [Neu5Ac α $(2\rightarrow 3)$ Gal β $(1\rightarrow 3)$]GalNAc $\alpha \rightarrow$)TA-NH ₂	35	$\rightarrow 3)] GalNAc \ \alpha \rightarrow) APDT (Neu5Ac \ \alpha \ (2 \rightarrow 3)Gal \ \beta \ (1 \rightarrow 3)GalNAc \ \alpha \ 1 \rightarrow) RPAPGS (Gal \ \beta \ \alpha \ \alpha$
		$(1 \rightarrow 3)[\text{GlcNAc }\beta \ (1 \rightarrow 6)[\text{Neu5Ac }\alpha \ (2 \rightarrow 3)\text{Gal} \ \beta \ (1 \rightarrow 3)]\text{GalNAc }\alpha \rightarrow)\text{TA-NH}_2$
		$(1 \rightarrow 3)[\text{GlcNAc }\beta \ (1 \rightarrow 6)[\text{Neu5Ac }\alpha \ (2 \rightarrow 3)\text{Gal} \ \beta \ (1 \rightarrow 3)]\text{GalNAc }\alpha \rightarrow)\text{TA-NH}_2$

Synthesis and characterization of compounds 1, 3, 4, 20, 24, and 25;^[1] 2, 5, and 6;^[2] 32-35.^[3]

- [1] F. Garcia-Martin, T. Matsushita, H. Hinou and S.-I. Nishimura, *Chemistry-a European Journal* 2014, 20, 15891-15902.
- [2] H. Coelho, T. Matsushita, G. Artigas, H. Hinou, F. J. Canada, R. Lo-Man, C. Leclerc,
 E. J. Cabrita, J. Jimenez-Barbero, S.-I. Nishimura, F. Garcia-Martin and F. Marcelo,
 Journal of the American Chemical Society 2015, *137*, 12438-12441.
- [3] S. Rangappa, G. Artigas, R. Miyoshi, Y. Yokoi, S. Hayakawa, F. Garcia-Martin, H. Hinou and S.-I. Nishimura, *Medchemcomm* 2016, 7, 1102-1122.

	Gal-3	Gal-3tr	Gal-4							
				Gal-4N	Gal-4C	Gal-8	Gal-1	GRIFIN	Gal-5	GRI
				+						+
										+
					+			+		+
				+	+					
			+	+	+					
			++++	+	+	+++		+++		
			+++	+	+			+		+
0			++++++	++	++	++++++		+++	+	
1			++++++	+++	++	+++++		+	+	
2				+		+				
3				+						
4										
5			+++	++	+	++		+		
5				+		+				
7				+						
3										
9				+	+					
)										
1				+++	+					
2					+					
3				+	+					
4										
5			+	+	+					
6										
7										
8			+++++		+					
9			++++	+	+	+		+		
0			+							
1			+++++		+	+		++		

Table S2. Grades of fluorescence intensity* for compound **1~35** after treatment with galectins and galectin related proteins (90 µg/mL) tested in this study.

*Each grade are assigned from average value of relative fluorescence intensity (RFU) of the four 100 mM spots for each compound on microarray; + 0.50-1.49 (x 10^{-7}), ++ 1.50-2.49 (x 10^{-7}), +++ 2.50-3.49 (x 10^{-7}), ++++ 3.50-4.49 (x 10^{-7}), +++++ 3.50-4.49 (x 10^{-7}).

+

 $^+$

++

+++

+++++

++++++

++++++

+

33

34

35

+

+++

Characterization of peptides/glycopeptides

General procedure for the UPLC analyses of purified glycopeptides

All measurements were performed using a Waters Acquity Ultra Performance LC system equipped with binary solvent delivery pump, an auto sampler and a UV detector. Synthetic peptides and glycopeptides purified by semi-preparative RP-HPLC were analyzed on an Acquity UPLC BEN[®]C18 column (1.7 μ m, 2.1 × 50 mm, Waters) at a flow rate of 0.2 mL/min. All separations were monitored at 220 nm. Column temperature was 40 °C. A gradient of water with 0.1% TFA (eluent A) and acetonitrile with 0.1% TFA (eluent B) were used for the mobile phase. The ratio of B was linearly increased from 2 to 30% in 12.6 min, then the column was washed with 90% B and equilibrium with 2% B. MALDI-TOF MS data were recorded by Ultraflex I (Bruker Daltnics) using DHB [10 mg in 1 mL of 50% acetonitrile with 0.1% TFA (1:1 mixture of eluent A and B for RP-HPLC).

Compound 7. Analytical UPLC: $t_R = 7.269$ min, peak area ratio 100%. MALDI-TOFMS: $C_{117}H_{189}N_{31}O_{46}$ [M+H]⁺ calcd (m/z) 2765.3403, found (m/z) 2765.1069. Amino acid ratios (numbers in parenthesis are theorical values): Asp (1) 1.0, Thr (4) 3.7, Ser (2) 1.8, Gly (3) 3.0, Ala (4) 4.1, Val (2) 1.9, His (1) 1.0, Arg (1) 1.0, Pro (5) 5.4.

Compound 8. Analytical UPLC: $t_R = 7.624$ min, peak area ratio 100%. MALDI-TOFMS: $C_{117}H_{189}N_{31}O_{46}$ [M+H]⁺ calcd (m/z) 2765.3403, found (m/z) 2765.0138. Amino acid ratios (numbers in parenthesis are theorical values): Asp (1) 1.0, Thr (4) 3.8, Ser (2) 1.8, Gly (3) 3.0, Ala (4) 4.1, Val (2) 2.0, His (1) 1.0, Arg (1) 1.0, Pro (5) 5.3.

Compound 9. Analytical UPLC: $t_R = 7.504$ min, peak area ratio 100%. MALDI-TOFMS: $C_{117}H_{189}N_{31}O_{46}$ [M+H]⁺ calcd (m/z) 2765.3403, found (m/z) 2764.9759. Amino acid ratios (numbers in parenthesis are theorical values): Asp (1) 1.0, Thr (4) 3.8, Ser (2) 1.8, Gly (3) 3.0, Ala (4) 4.0, Val (2) 1.9, His (1) 1.1, Arg (1) 1.0, Pro (5) 5.4.

Compound 10. Analytical UPLC: $t_R = 7.616$ min, peak area ratio 100%. MALDI-TOF-HRMS: $C_{117}H_{189}N_{31}O_{46}$ [M+H]⁺ calcd (m/z) 2765.3403, found (m/z) 2765.1383. Amino acid ratios (numbers in parenthesis are theorical values): Asp (1) 1.0, Thr (4) 3.7, Ser (2) 1.8, Gly (3) 3.0, Ala (4) 4.1, Val (2) 1.9, His (1) 1.1, Arg (1) 1.0, Pro (5) 5.4.

Compound 11. Analytical UPLC: $t_R = 7.538$ min, peak area ratio 100%. MALDI-TOFMS: $C_{117}H_{189}N_{31}O_{46}$ [M+H]⁺ calcd (m/z) 2765.3403, found (m/z) 2765.2273. Amino acid ratios (numbers in parenthesis are theorical values): Asp (1) 1.0, Thr (4) 3.7, Ser (2) 1.8, Gly (3) 3.0, Ala (4) 4.1, Val (2) 1.9, His (1) 1.1, Arg (1) 1.0, Pro (5) 5.4.

Compound 12. Analytical UPLC: $t_R = 7.088$ min, peak area ratio 98.4%. MALDI-TOFMS: $C_{117}H_{189}N_{31}O_{46}$ [M+H]⁺ calcd (m/z) 2968.4197, found (m/z) 2967.9384. Amino acid ratios (numbers in parenthesis are theorical values): Asp (1) 1.0, Thr (4) 3.8, Ser (2) 1.8, Gly (3) 3.0, Ala (4) 4.1, Val (2) 2.0, His (1) 1.0, Arg (1) 1.0, Pro (5) 5.2.

Compound 13. Analytical UPLC: $t_R = 7.431$ min, peak area ratio 100%. MALDI-TOFMS: $C_{117}H_{189}N_{31}O_{46}$ [M+H]⁺ calcd (m/z) 2968.4197, found (m/z) 2968.4793. Amino acid ratios (numbers in parenthesis are theorical values): Asp (1) 1.0, Thr (4) 3.8, Ser (2) 1.8, Gly (3) 3.0, Ala (4) 4.2, Val (2) 2.0, His (1) 1.0, Arg (1) 1.0, Pro (5) 5.2.

Compound 14. Analytical UPLC: $t_R = 7.229$ min, peak area ratio 100%. MALDI-TOFMS: $C_{117}H_{189}N_{31}O_{46}$ [M+H]⁺ calcd (m/z) 2968.4197, found (m/z) 2967.9460. Amino acid ratios (numbers in parenthesis are theorical values): Asp (1) 1.0, Thr (4) 3.8, Ser (2) 1.8, Gly (3) 3.1, Ala (4) 4.1, Val (2) 2.0, His (1) 1.1, Arg (1) 1.0, Pro (5) 5.2.

Compound 15. Analytical UPLC: $t_R = 7.441$ min, peak area ratio 98.5%. MALDI-TOFMS: $C_{117}H_{189}N_{31}O_{46}$ [M+H]⁺ calcd (m/z) 2968.4197, found (m/z) 2968.0959. Amino acid ratios (numbers in parenthesis are theorical values): Asp (1) 1.0, Thr (4) 3.8, Ser (2) 1.8, Gly (3) 3.0, Ala (4) 4.1, Val (2) 2.0, His (1) 1.1, Arg (1) 1.0, Pro (5) 5.2.

Compound 16. Analytical UPLC: $t_R = 7.341$ min, peak area ratio 100%. MALDI-TOFMS: $C_{117}H_{189}N_{31}O_{46}$ [M+H]⁺ calcd (m/z) 2968.4197, found (m/z) 2968.3110. Amino acid ratios (numbers in parenthesis are theorical values): Asp (1) 1.0, Thr (4) 3.8, Ser (2) 1.8, Gly (3) 3.0, Ala (4) 4.1, Val (2) 2.0, His (1) 1.1, Arg (1) 1.0, Pro (5) 5.3.

Compound 17. Analytical UPLC: $t_R = 7.305$ min, peak area ratio 100%. MALDI-TOFMS: $C_{119}H_{192}N_{32}O_{46}$ [M+H]⁺ calcd (m/z) 2806.3668, found (m/z) 2806.0823 Amino acid ratios (numbers in parenthesis are theorical values): Asp (1) 1.0, Thr (4) 3.7, Ser (2) 1.8, Gly (3) 3.0, Ala (4) 4.1, Val (2) 2.0, His (1) 1.0, Arg (1) 1.0, Pro (5) 5.3.

Compound 18. Analytical UPLC: $t_R = 7.363$ min, peak area ratio 100%. MALDI-TOFMS: $C_{119}H_{192}N_{32}O_{46}$ [M+H]⁺ calcd (m/z) 2806.3668, found (m/z) 2805.9321. Amino acid ratios (numbers in parenthesis are theorical values): Asp (1) 1.0, Thr (4) 3.7, Ser (2) 1.8, Gly (3) 3.0, Ala (4) 4.1, Val (2) 2.0, His (1) 1.0, Arg (1) 1.0, Pro (5) 5.4.

Compound 19. Analytical UPLC: $t_R = 7.355$ min, peak area ratio 100%. MALDI-TOFMS: $C_{119}H_{192}N_{32}O_{46}$ [M+H]⁺ calcd (m/z) 2806.3668, found (m/z) 2806.1062. Amino acid ratios (numbers in parenthesis are theorical values): Asp (1) 1.0, Thr (4) 3.7, Ser (2) 1.8, Gly (3) 3.0, Ala (4) 4.1, Val (2) 1.9, His (1) 1.0, Arg (1) 1.0, Pro (5) 5.4.

Compound 21. Analytical UPLC: $t_R = 7.591$ min, peak area ratio 100%. MALDI-TOFMS: $C_{119}H_{192}N_{32}O_{46}$ [M+H]⁺ calcd (m/z) 2806.3668, found (m/z) 2806.1647. Amino acid ratios (numbers in parenthesis are theorical values): Asp (1) 1.0, Thr (4) 3.7, Ser (2) 1.8, Gly (3) 3.0, Ala (4) 4.1, Val (2) 2.0, His (1) 1.0, Arg (1) 1.0, Pro (5) 5.4.

Compound 22. Analytical UPLC: $t_R = 7.718$ min, peak area ratio 99.6%. MALDI-TOFMS: $C_{119}H_{192}N_{32}O_{46}$ [M+H]⁺ calcd (m/z) 2806.3668, found (m/z) 2806.4264. Amino acid ratios (numbers in parenthesis are theorical values): Asp (1) 1.0, Thr (4) 3.8, Ser (2) 1.8, Gly (3) 3.0, Ala (4) 4.1, Val (2) 1.9, His (1) 1.1, Arg (1) 1.0, Pro (5) 5.4.

Compound 23. Analytical UPLC: $t_R = 7.484$ min, peak area ratio 100%. MALDI-TOFMS: $C_{119}H_{192}N_{32}O_{46}$ [M+H]⁺ calcd (m/z) 2806.3668, found (m/z) 2806.0616. Amino acid ratios (numbers in parenthesis are theorical values): Asp (1) 1.0, Thr (4) 3.7, Ser (2) 1.8, Gly (3) 3.0, Ala (4) 4.1, Val (2) 2.0, His (1) 1.0, Arg (1) 1.0, Pro (5) 5.4.

Compound 26. Analytical UPLC: $t_R = 4.014$ min, peak area ratio 100%. MALDI-TOFMS: $C_{24}H_{42}N_4O_{12}$ [M+H]⁺ calcd (m/z) 578.2799, [M+Na]⁺ found (m/z) 601.8256. Amino acid ratios (numbers in parenthesis are theorical values): Thr (1) 1.0.

Compound 27. Analytical UPLC: $t_R = 3.654$ min, peak area ratio 100%. MALDI-TOFMS: $C_{23}H_{40}N_4O_{12}$ [M+H]⁺ calcd (m/z) 564.2643, [M+Na]⁺ found (m/z) 587.7875. Amino acid ratios (numbers in parenthesis are theorical values): Ser (1) 1.0.

Compound 28. Analytical UPLC: $t_R = 3.748$ min, peak area ratio 100%. MALDI-TOFMS: $C_{30}H_{52}N_4O_{17}$ [M+H]⁺ calcd (m/z) 740.3327, [M+Na]⁺ found (m/z) 763.1747. Amino acid ratios (numbers in parenthesis are theorical values): Thr (1) 1.0.

Compound 29. Analytical UPLC: $t_R = 3$. min, peak area ratio 100%. MALDI-TOFMS: $C_{29}H_{50}N_4O_{17}$ [M+H]⁺ calcd (m/z) 726.3171, [M+Na]⁺ found (m/z) 749.1237. Amino acid ratios (numbers in parenthesis are theorical values): Ser (1) 1.0.

Compound 30. Analytical UPLC: $t_R = 3.382$ min, peak area ratio 95.5%. MALDI-TOFMS: $C_{38}H_{65}N_5O_{22}$ [M+H]⁺ calcd (m/z) 943.4121, [M+Na]⁺ found (m/z) 966.5864. Amino acid ratios (numbers in parenthesis are theorical values): Thr (1) 1.0.

Compound 31. Analytical UPLC: $t_R = 3.464$ min, peak area ratio 100%. MALDI-TOFMS:

 $C_{37}H_{63}N_5O_{22}$ [M+H]⁺ calcd (m/z) 929.3965, [M+Na]⁺ found (m/z) 952.2437. Amino acid ratios (numbers in parenthesis are theorical values): Ser (1) 1.0.

Figure S1. (a) UPLC profile and (b) MALDI-TOF MS of Compound 7.

Figure S6. (a) UPLC profile and (b) MALDI-TOF MS of Compound 12.

Figure S17. (a) UPLC profile and (b) MALDI-TOF MS of Compound 26.

(a) UPLC profile

Figure S23. Relative fluorescence units (RFU) with its standard deviation for compound

 $1{\sim}35$ after treatment with Gal-3CRD, galectin-1, and C-GRP.

