254 research outputs found

    CLCN4-Related Neurodevelopmental Disorder

    Get PDF
    Clinical characteristics CLCN4-related neurodevelopmental disorder (CLCN4-NDD), an X-linked disorder, is characterized in the 36 males reported to date by developmental delay or intellectual disability, behavioral/mental health issues (e.g., autism spectrum disorder, anxiety, hyperactivity, and bipolar disorder), epilepsy, and gastrointestinal dysfunction. The five heterozygous females with a de novo CLCN4 variant reported to date had findings very similar to those of affected males. Twenty-two of 25 heterozygous females identified in family studies following identification of an affected male were unaffected or had only mild specific learning difficulties and/or mental health concerns, whereas three were more severely affected. Diagnosis/testing The diagnosis of CLCN4-NDD is established in a male proband with suggestive findings and a hemizygous pathogenic variant in CLCN4 identified by molecular genetic testing. The diagnosis of CLCN4-NDD is usually established in a female proband with suggestive findings and a heterozygous pathogenic variant in CLCN4 identified by molecular genetic testing; however, the phenotype in females with a pathogenic variant can range from asymptomatic to severe. Management Treatment of manifestations: Treatment is supportive and often includes multidisciplinary specialists in neurology, pediatrics, mental health, physiatry, occupational and physical therapy, gastroenterology, feeding therapy, ophthalmology, audiology, and medical genetics. Surveillance: Routine monitoring of neurologic findings (response to anti-seizure medications; emergence of new findings), development and educational progress, psychiatric/behavioral issues (response to medications; emergence of new findings), mobility and self-help skills, growth and gastrointestinal manifestations, ophthalmologic findings, hearing, and family support systems. Genetic counseling CLCN4-NDD is inherited in an X-linked manner. The father of an affected male will not have the disorder nor will he be hemizygous for the CLCN4 pathogenic variant. If the mother of a proband has a CLCN4 pathogenic variant, the chance of transmitting it in each pregnancy is 50%: males who inherit the pathogenic variant will be affected; females who inherit the pathogenic variant will be heterozygotes and may be unaffected or have clinical findings ranging from mild learning difficulties and mental health concerns to severe manifestations. If the proband represents a simplex case and if the CLCN4 pathogenic variant cannot be detected in the leukocyte DNA of the mother, the risk to sibs is presumed to be low but greater than that of the general population. Once the CLCN4 pathogenic variant has been identified in an affected family member, prenatal and preimplantation genetic testing are possible

    HUWE1 mutation explains phenotypic severity in a case of familial idiopathic intellectual disability

    No full text
    The advent of next-generation sequencing has proven to be a key force in the identification of new genes associated with intellectual disability. In this study, high-throughput sequencing of the coding regions of the X-chromosome led to the identification of a missense variant in the HUWE1 gene. The same variant has been reported before by Froyen et al. (2008). We compare the phenotypes and demonstrate that, in the present family, the HUWE1 mutation segregates with the more severe ID phenotypes of two out of three brothers. The third brother has a milder form of ID and does not carry the mutation

    Detecting genomic indel variants with exact breakpoints in single- and paired-end sequencing data using SplazerS

    Get PDF
    Motivation: The reliable detection of genomic variation in resequencing data is still a major challenge, especially for variants larger than a few base pairs. Sequencing reads crossing boundaries of structural variation carry the potential for their identification, but are difficult to map. Results: Here we present a method for ‘split’ read mapping, where prefix and suffix match of a read may be interrupted by a longer gap in the read-to-reference alignment. We use this method to accurately detect medium-sized insertions and long deletions with precise breakpoints in genomic resequencing data. Compared with alternative split mapping methods, SplazerS significantly improves sensitivity for detecting large indel events, especially in variant-rich regions. Our method is robust in the presence of sequencing errors as well as alignment errors due to genomic mutations/divergence, and can be used on reads of variable lengths. Our analysis shows that SplazerS is a versatile tool applicable to unanchored or single-end as well as anchored paired-end reads. In addition, application of SplazerS to targeted resequencing data led to the interesting discovery of a complete, possibly functional gene retrocopy variant. Availability: SplazerS is available from http://www.seqan.de/projects/ splazers

    ГЛАГОЛЫ ДВИЖЕНИЯ РУССКОГО ЯЗЫКА (сборник таблиц и упражнений слушателям подготовительного отделения для иностранных граждан)

    Get PDF
    Представлены русские глаголы, обозначающие способы передвижения в пространстве, формы и случаи употребления глаголов движения в языке для изучения иностранными студентами подготовительного отделения (сборник таблиц и упражнений)

    Mutations in the intellectual disability gene Ube2a cause neuronal dysfunction and impair parkin-dependent mitophagy

    No full text
    The prevalence of intellectual disability is around 3%; however, the etiology of the disease remains unclear in most cases. We identified a series of patients with X-linked intellectual disability presenting mutations in the Rad6a (Ube2a) gene, which encodes for an E2 ubiquitin-conjugating enzyme. Drosophila deficient for dRad6 display defective synaptic function as a consequence of mitochondrial failure. Similarly, mouse mRad6a (Ube2a) knockout and patient-derived hRad6a (Ube2a) mutant cells show defective mitochondria. Using in vitro and in vivo ubiquitination assays, we show that RAD6A acts as an E2 ubiquitin-conjugating enzyme that, in combination with an E3 ubiquitin ligase such as Parkin, ubiquitinates mitochondrial proteins to facilitate the clearance of dysfunctional mitochondria in cells. Hence, we identify RAD6A as a regulator of Parkin-dependent mitophagy and establish a critical role for RAD6A in maintaining neuronal function

    Comprehensive genotype‐phenotype correlation in AP‐4 deficiency syndrome; Adding data from a large cohort of Iranian patients

    No full text
    Mutations in adaptor protein complex‐4 (AP‐4) genes have first been identified in 2009, causing a phenotype termed as AP‐4 deficiency syndrome. Since then several patients with overlapping phenotypes, comprised of intellectual disability (ID) and spastic tetraplegia have been reported. To delineate the genotype‐phenotype correlation of the AP‐4 deficiency syndrome, we add the data from 30 affected individuals from 12 out of 640 Iranian families with ID in whom we detected disease‐causing variants in AP‐4 complex subunits, using next‐generation sequencing. Furthermore, by comparing genotype‐phenotype findings of those affected individuals with previously reported patients, we further refine the genotype‐phenotype correlation in this syndrome. The most frequent reported clinical findings in the 101 cases consist of ID and/or global developmental delay (97%), speech disorders (92.1%), inability to walk (90.1%), spasticity (77.2%), and microcephaly (75.2%). Spastic tetraplegia has been reported in 72.3% of the investigated patients. The major brain imaging findings are abnormal corpus callosum morphology (63.4%) followed by ventriculomegaly (44.5%). Our result might suggest the AP‐4 deficiency syndrome as a major differential diagnostic for unknown hereditary neurodegenerative disorders

    Oral Long-Term Complications of Allogeneic Haematopoietic Stem Cell Transplantation

    Get PDF
    INTRODUCTION: Kinesin superfamily (KIF) genes encode motor proteins that have fundamental roles in brain functioning, development, survival and plasticity by regulating the transport of cargo along microtubules within axons, dendrites and synapses. Mouse knockout studies support these important functions in the nervous system. The role of KIF genes in intellectual disability (ID) has so far received limited attention, although previous studies have suggested that many ID genes impinge on synaptic function. METHODS: By applying next-generation sequencing (NGS) in ID patients, we identified likely pathogenic mutations in KIF4A and KIF5C. To further confirm the pathogenicity of these mutations, we performed functional studies at the level of synaptic function in primary rat hippocampal neurons. RESULTS AND CONCLUSIONS: Four males from a single family with a disruptive mutation in the X-linked KIF4A (c.1489-8_1490delins10; p.?- exon skipping) showed mild to moderate ID and epilepsy. A female patient with a de novo missense mutation in KIF5C (c.11465A>C; p.(Glu237Lys)) presented with severe ID, epilepsy, microcephaly and cortical malformation. Knock-down of Kif4a in rat primary hippocampal neurons altered the balance between excitatory and inhibitory synaptic transmission, whereas the mutation in Kif5c affected its protein function at excitatory synapses. Our results suggest that mutations in KIF4A and KIF5C cause ID by tipping the balance between excitatory and inhibitory synaptic excitability

    Whole genome sequencing identifies a duplicated region encompassing Xq13.2q13.3 in a large Iranian family with intellectual disability

    No full text
    Background The X chromosome has historically been one of the most thoroughly investigated chromosomes regarding intellectual disability (ID), whose etiology is attributed to many factors including copy number variations (CNVs). Duplications of the long arm of the X chromosome have been reported in patients with ID, short stature, facial anomalies, and in many cases hypoplastic genitalia and/or behavioral abnormalities. Methods Here, we report on a large Iranian family with X‐linked ID caused by a duplication on the X chromosome identified by whole genome sequencing in combination with linkage analysis. Results Seven affected males in different branches of the family presented with ID, short stature, seizures, facial anomalies, behavioral abnormalities (aggressiveness, self‐injury, anxiety, impaired social interactions, and shyness), speech impairment, and micropenis. The duplication of the region Xq13.2q13.3, which is ~1.8 Mb in size, includes seven protein‐coding OMIM genes. Three of these genes, namely SLC16A2, RLIM, and NEXMIF, if impaired, can lead to syndromes presenting with ID. Of note, this duplicated region was located within a linkage interval with a LOD score >3. Conclusion Our report indicates that CNVs should be considered in multi‐affected families where no candidate gene defect has been identified in sequencing data analysis

    Heterologous expression of a thermophilic diacylglycerol acyltransferase triggers triglyceride accumulation in Escherichia coli

    Get PDF
    Triglycerides (TAGs), the major storage molecules of metabolic energy and source of fatty acids, are produced as single cell oil by some oleogenic microorganisms. However, these microorganisms require strict culture conditions, show low carbon source flexibilities, lack efficient genetic modification tools and in some cases pose safety concerns. TAGs have essential applications such as behaving as a source for added-value fatty acids or giving rise to the production of biodiesel. Hence, new alternative methods are urgently required for obtaining these oils. In this work we describe TAG accumulation in the industrially appropriate microorganism Escherichia coli expressing the heterologous enzyme tDGAT, a wax ester synthase/triacylglycerol:acylCoA acyltranferase (WS/DGAT). With this purpose, we introduce a codon-optimized gene from the thermophilic actinomycete Thermomonospora curvata coding for a WS/DGAT into different E. coli strains, describe the metabolic effects associated to the expression of this protein and evaluate neutral lipid accumulation. We observe a direct relation between the expression of this WS/DGAT and TAG production within a wide range of culture conditions. More than 30% TAGs were detected within the bacterial neutral lipids in 90 minutes after induction. TAGs were observed to be associated with the hydrophobic enzyme while forming round intracytoplasmic bodies, which could represent a bottleneck for lipid accumulation in E. coli. We detected an increase of almost 3- fold in the monounsaturated fatty acids (MUFA) occurring in the recombinant strains. These MUFA were predominant in the accumulated TAGs achieving 46% of the TAG fatty acids. These results set the basis for further research on the achievement of a suitable method towards the sustainable production of these neutral lipids

    A noncoding, regulatory mutation implicates HCFC1 in nonsyndromic intellectual disability

    Get PDF
    The discovery of mutations causing human disease has so far been biased toward protein-coding regions. Having excluded all annotated coding regions, we performed targeted massively parallel resequencing of the nonrepetitive genomic linkage interval at Xq28 of family MRX3. We identified in the binding site of transcription factor YY1 a regulatory mutation that leads to overexpression of the chromatin-associated transcriptional regulator HCFC1. When tested on embryonic murine neural stem cells and embryonic hippocampal neurons, HCFC1 overexpression led to a significant increase of the production of astrocytes and a considerable reduction in neurite growth. Two other nonsynonymous, potentially deleterious changes have been identified by X-exome sequencing in individuals with intellectual disability, implicating HCFC1 in normal brain function
    corecore