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ABSTRACT

Motivation: The reliable detection of genomic variation in
resequencing data is still a major challenge, especially for variants
larger than a few base pairs. Sequencing reads crossing boundaries
of structural variation carry the potential for their identification, but
are difficult to map.
Results: Here we present a method for ‘split’ read mapping, where
prefix and suffix match of a read may be interrupted by a longer
gap in the read-to-reference alignment. We use this method to
accurately detect medium-sized insertions and long deletions with
precise breakpoints in genomic resequencing data. Compared with
alternative split mapping methods, SplazerS significantly improves
sensitivity for detecting large indel events, especially in variant-rich
regions. Our method is robust in the presence of sequencing errors
as well as alignment errors due to genomic mutations/divergence,
and can be used on reads of variable lengths. Our analysis shows
that SplazerS is a versatile tool applicable to unanchored or single-
end as well as anchored paired-end reads. In addition, application
of SplazerS to targeted resequencing data led to the interesting
discovery of a complete, possibly functional gene retrocopy variant.
Availability: SplazerS is available from http://www.seqan.de/
projects/ splazers.
Contact: emde@inf.fu-berlin.de
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Next-generation sequencing (NGS) technologies have had huge
impact on the study of molecular biology (Metzker, 2010): ultra
high-throughput NGS technologies provide excellent means for
analyzing RNA content of a cell (Wang et al., 2009), resequencing
whole genomes (Bentley et al., 2008; McKernan et al., 2009;
Wheeler et al., 2008) and detecting, for example, disease-causing
variants (Chen et al., 2008) or investigating the epigenetic state
of a cell (Barski et al., 2007). There is a long list of biological
applications and, accordingly, a high demand for specialized
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bioinformatics tools for the analyses. Due to the tremendous data
yield, this constitutes a great challenge to computational biology.
One of the most fundamental tasks is read mapping, i.e. determining
the origin of the sequenced reads in a reference genome. All further
analysis is based on the mapped reads, e.g. genomic variants are
identified or transcript expression is quantified. Reads containing
more than a few variant base pairs with respect to a reference will
be hard to map, and sequencing errors further complicate this task.

While a large part of human genomic variation is due to
single nucleotide polymorphisms (SNPs), recent years have shown
that insertion/deletion (indel) variants dramatically contribute to
genomic diversity (Mullaney et al., 2010). Furthermore, they have
been linked to many diseases (Stenson et al., 2009), and especially
large indels have been shown to have strong structural and functional
impact (Stankiewicz and Lupski, 2010).

The first high-throughput method for genome-wide detection of
large deletions and duplications was array comparative genomic
hybridization (aCGH) where sample and reference DNA are
competitively hybridized on a probe array (Pinkel and Albertson,
2005). Given steadily decreasing costs, sequencing approaches are
likely to gradually replace aCGH methods, since they carry the
potential to provide base pair resolution and identify novel insertions
while generating less measurement noise.

Sequencing-based indel detection methods are based on different
strategies often utilizing paired-end or mate-pair sequencing data.
One conclusion from the 1000 Genomes Project so far is,
that a comprehensive indel detection method needs to make
use of different detection strategies as no strategy alone is
sufficient (Durbin et al., 2010). We will briefly introduce the different
strategies and point to their strengths and weaknesses.

Most prominently, strategies based on paired-end or mate-pair
data make use of the approximate distance and relative orientation
of read pairs. Shifts in the mapped distance or changes in relative
orientation indicate indel events or also more complex structural
variation. Examples for popular methods that address indel detection
based on abnormal insert sizes are PEMer (Korbel et al., 2009),
BreakDancer (Chen et al., 2009), MoDIL (Lee et al., 2009)
and SVDetect (Zeitouni et al., 2010). A drawback of these read
pair methods is that they require tight insert size distributions
for accurate discovery of small- to medium-sized indels and for
confident localization of breakpoints (Medvedev et al., 2009). So-
called anchored split read mapping addresses this shortcoming by

© The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 619

 at Freie U
niversitaet B

erlin on Septem
ber 12, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository: Freie Universität Berlin (FU), Math Department (fu_mi_publications)

https://core.ac.uk/display/267951126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
emde@inf.fu-berlin.de
http://bioinformatics.oxfordjournals.org/


[17:53 27/2/2012 Bioinformatics-bts019.tex] Page: 620 619–627

A.-K.Emde et al.

directly taking advantage of reads crossing a breakpoint. In split
read mapping, the 5′ and 3′ match of a read may be interrupted by
a longer gap in the read-to-reference alignment enabling detection
of the exact breakpoint and size of the indel. Ye et al. (2009) first
applied this approach to short NGS read data. Their tool, Pindel,
builds on the availability of paired-end reads, split mapping the
unmapped but anchored end within a genomic region defined by its
confidently mapped paired end. Pindel is based on a pattern growth
algorithm, combining unique 5′ and 3′ matches into a split read
match.

Detecting large indels in single-end or unanchored reads is more
challenging, due to the short read length and to the repetitiveness
of genomic DNA (especially in higher organisms such as human).
Read depth methods (Xie and Tammi, 2009; Yoon et al., 2009)
work on single-end as well as paired-end data and are able to
detect very large deletions and duplications, i.e. changes in copy
number, by comparing the observed number of mapped reads in a
genomic region to the expected one. These methods provide no exact
breakpoints due to low resolution and suffer from artifactual read
depth fluctuations.

However, as read lengths increase with advances in sequencing
technology, single reads provide the potential for identifying large
indels through split-read alignment. In this work, we will use single-
end and unanchored reads as short as 76 bp to predict large deletions
up to several kilobases in size with high confidence.

Similar to Pindel, our tool SplazerS employs a split read approach.
However, it uses a more sensitive alignment method for prefix and
suffix matches, allowing for mismatches and small gaps, thereby
making it more robust in the presence of small genomic variation
and sequencing errors. Especially, read suffixes require higher
error tolerance, as sequencing error rates tend to increase toward
the 3’ ends of reads. Most notably, SplazerS implements a fast
anchored as well as a more general unanchored/single-end alignment
mode, making it applicable to paired-end as well as single-end
sequencing data.

Another tool for split read alignment is GSNAP (Wu and Nacu,
2010), which indexes every third 12mer in the genome and then
maps reads one after the other by searching for exact 12mer matches.
It does not provide support for anchored split read mapping or
for subsequent indel detection. Also BWA (Li and Durbin, 2009),
a popular multi-purpose read mapping tool based on a Burrows-
Wheeler index, provides split read mapping functionality to a certain
extent. Further methods such as SpliceMap (Au et al., 2010),
MapSplice (Wang et al., 2010) or SplitSeek (Ameur et al., 2010)
follow similar approaches but are geared toward splice junction
discovery in RNA-Seq data. Typical drawbacks of these methods
for indel detection are a lack of functionality for insertion detection,
or their requirement for donor/acceptor splicing patterns.

Our method is novel in that it supports both Hamming (ungapped)
and edit (gapped) alignment in the 5′ and 3′ matches, making it
applicable to reads from different sequencing technologies. Also
longer and variable read lengths as expected from upcoming
sequencing technologies (Eid et al., 2009) can be handled. It does
not require the prefix or suffix of minimum length to be unique,
but attempts to align the entire read while identifying the best split
position. It can furthermore report multiple and also suboptimal
matches if they exist. SplazerS can be used to split-align short reads
to candidate regions as in anchored split read mapping, and is also
able to directly align single-end reads to an entire genome where

stricter parameter settings may be desired. For fine-tuning of small
indel detection, the mapping results can be used in conjunction with
arbitrary indel detection methods supporting the SAM format, such
as Dindel (Albers et al., 2010) or GATK (McKenna et al., 2010).
Split-mapped reads can also be combined with SAM output from
other mapping steps, for example ‘normally’ mapped reads where
small indels were already allowed.

We apply our method to real paired-end data and to simulated
and real single-end data and demonstrate its high precision and
high sensitivity, even in challenging, variant-rich regions. We
additionally use paired-end data in single-end mode to show how
prediction accuracy can be increased even further when considering
unanchored reads. In addition, we will show how application of
SplazerS led to the interesting discovery of a retrocopy of PQBP1, a
gene which has been shown to be involved in X-linked intellectual
disability (Kalscheuer et al., 2003; Lenski et al., 2004).

2 METHODS
We first want to give some basic notation: we have a set of reads R where
r ∈R and a reference sequence g, where r and g are sequences over the
alphabet {A,C,G,T,N}. Furthermore, the operator |·| denotes the length
of a sequence. Given an alignment a

gi,j
rk,l of the subsequence of read r starting

in position k and ending in position l to the subsequence of g starting in i and
ending in j, we define an error function d(a

gi,j
rk,l ) that returns the number of

errors in the alignment, i.e. the sum of the number of gaps and mismatches.
Any character aligned with an ‘N’ is counted as an alignment error. The error
rate is then given by ε=d(a

gi,j
rk,l )/(l−k+1), i.e. the number of alignment

errors divided by the length of the read subsequence. For the sake of clarity,
we will drop the superscript and refer to alignments as ark,l instead of a

gi,j
rk,l .

2.1 Definition of split read alignment
We want to identify collinear split read alignments, i.e. alignments that are
split into a prefix (5′) and suffix (3′) match that lie within a collinear genomic
subsequence W.l.o.g. we assume our reads to only match to the forward
strand, and define a split read alignment of read r as an alignment where the
following holds:

(1) a (non-empty) prefix p of r aligns to gi,j

(2) a (non-empty) suffix s of r aligns to gk,l

(3) |p|+|s|=|r| and j+1<k (read spans a deletion) or |p|+|s|< |r| and
j+1=k (read spans an insertion)

where 1≤ i≤ j<k ≤ l≤|g|.
A valid split read alignment (or split read match) is one that additionally

fulfills the following criteria:

(1) |p|≥m and |s|≥m

(2) d(ap1,m )≤ep and d(as|s|−m+1,|s| )≤es

(3)
d(ap)+d(as)

|p|+|s| ≤ε

(4) k−j−1≤δ

The first condition ensures that prefix and suffix have at least a certain
minimum match length m. The second condition ensures that the number
of errors in the minimum length prefix (suffix) match is at most a certain
maximum number ep (es). Condition 3 guarantees that the sum of the number
of errors in the prefix and suffix match divided by the combined length of
prefix and suffix lies within the allowed error rate ε. The maximum gap length
δ puts a constraint on the distance of prefix and suffix match. An example
of a valid and an invalid split read match is given in Figure 1. In some
cases, it may be desirable to set es >ep as error rates tend to increase toward
the 3’ ends of reads. Note that m, es and ep are given as integer numbers,
independent of read length. However, the total error rate ε is dependent on
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A

B

Fig. 1. Two examples of split read alignments. Given parameters m=7,
ep =es =1 and ε=0.1. (A) is a valid alignment spanning a deletion and (B)
spans an insertion but is not a valid match as the error rate condition is
violated.

the read length, adjusting the allowed numbers of errors for reads of variable
length.

For valid anchored split read matches, we further restrict the genomic
region that the read is allowed to map to. This region is defined by the location
of the confidently mapped paired end and the expected insert size. To find
such valid split read alignments, we use the following algorithm which we
have implemented in SplazerS—in reference to the related general purpose
read mapper RazerS (Weese et al., 2009)—using the SeqAn library (Döring
et al., 2008).

2.2 Mapping algorithm
The input to our algorithm is a set of reads (either in Fasta/Fastq format or, for
anchored split mapping, in single-chromosome SAM format) and a reference
sequence (in Fasta format). The output file will contain the successfully split-
mapped reads in GFF or SAM format. Figure 2 outlines the main steps of the
algorithm. A filtering method identifies potential prefix/suffix matches, i.e.
match candidates (filtering phase, Fig. 2A). Possible match candidates are
verified with a seed-and-extend alignment method (match verification, Fig.
2B) and, if successful, combined into split read matches (match combination,
Fig.2C). The following describes these steps in detail.

2.2.1 Double-swift filtering identifies potential matches Our filtering
phase is based on counting q-gram matches (Burkhardt et al., 1999), i.e.
identifying short subsequences of length q that is shared between read
and reference. We build two indices: the left index containing all q-grams
of all read prefixes of length m, and the right index containing all q-
grams of all read suffixes of length m. Employing the SWIFT filtering
algorithm (Rasmussen et al., 2005), we start scanning the reference sequence
with the right index. Whenever a potential suffix match region for a read r is
encountered, i.e. a certain minimum number of matching q-grams have been
observed within a defined region of the genome, the left index is ‘dragged’
behind, up to the current position of the right index. Potential prefix matches
within the allowed distance, as defined by parameter δ, are recorded in a
queue. If there is at least one potential prefix match for r within the allowed
distance, this triggers the verification of the potential suffix match of r.

2.2.2 Prefix and suffix matches are verified separately Only if the suffix
match is verified positively, the potential prefix matches are also subjected
to verification. In order to avoid having to verify a potential prefix match
several times, the filtering queue keeps track of the verification status of
each potential prefix match. We verify potential prefix/suffix matches using
either a simple scanning of diagonals in the alignment matrix for ungapped
alignment, or using Myers’ Bit Vector algorithm (Myers, 1999) in the case
of edit distance. Verification is done only for the prefix/suffix of length m. A
positively verified prefix/suffix match is then extended using either ungapped

Fig. 2. Overview of the SplazerS algorithm.

or gapped X-drop extension, extending the match as far as possible within
the allowed overall error rate ε.

2.2.3 Prefix and suffix matches are combined to identify optimal breakpoint
location Whenever a prefix match ap and a suffix match as are to be
combined into a split read match, we first check whether the basic criteria
defined in the previous section can be fulfilled. We make use of the fact that
ap and as have been extended as far as possible, collecting the maximum
total number of errors allowed on the whole read. Therefore, if extended
prefix and suffix match would indicate a deletion but together do not cover
the entire read sequence, i.e. j+1<k and |p|+|s|< |r|, then prefix p and
suffix s are too short to be combined into a valid split read match. Also,
if prefix and suffix match are too close to each other, i.e. l−i<2m (in the
case of edit distance: l−i<2m−ep −es), then prefix and suffix cannot both
fulfill the minimum match length and therefore cannot constitute a valid
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split read match. By convention, the gap is placed to the leftmost position
that yields the lowest sum of errors in the prefix and suffix match. Again,
this is achieved by a simple scanning of diagonals in the case of Hamming
distance. For edit distance, a banded alignment matrix is computed to identify
the optimal combination of prefix and suffix match and thereby the optimal
gap placement.

2.3 Match scoring and ranking
Each match with a middle gap of length ≥1 receives a score sc=|p|+|s|−
2(d(ap)+d(as))−c(r), while matches without a middle gap, i.e. matches
that map ‘normally’ and do not indicate an indel event, receive score sc=
|p|+|s|−2(d(ap)+d(as)). The parameter c(r) puts a penalty on the existence
of a gap independent of its length and is set to �0.03×|r|� by default. It can
be set individually, depending on the error-proneness of the reads. Matches
with the same score are ranked according to the length of the middle gap (the
shorter the better). By default, a match is tagged as unique if it is the single
match with highest score. Uniqueness can be extended to a score range, i.e.
discarding reads that have more than a certain number of matches within a
range of the highest observed score. Multiple and also suboptimal matches
can be reported.

2.4 Choice of mapping parameters
There are several parameters that influence our method. In most cases, the
choice of the error rate ε and therefore also ep and es is rather straightforward,
depending mainly on the error pattern specific to the sequencing technology
used and/or on the relatedness of sample and reference genome. The choice
of parameters m and δ is mainly a matter of trade-off between sensitivity and
specificity, as well as runtime. In order to aid the user in choosing sensible
parameters, SplazerS provides in its verbose mode an estimate of the number
of random matches one expects in a random sequence using the chosen
parameter setting. To calculate these values, we use binomial statistics (see
Supplementary Material S1).

In the following results, we usually set ε=0.05, m=16 and ep =es =1
unless stated otherwise. The distance parameter δ will be set individually to
values between 5000 and 50 000.

2.5 Indel detection
Once we have split-mapped a set of reads, we use all unique best matches
to identify indel locations. For this purpose, we use the SeqAn tool snpStore
(http://www.seqan.de/projects/snpStore). The indel calling procedure is
mainly based on two thresholds: a minimum number and a minimum
percentage of spanning reads that are required to support the indel candidate.
Each pair of reference position and indel length observed in the mapped
reads is considered an indel candidate. For reads that contradict an indel, a
minimum overlap with the indel candidate position can be required. Figure 3
illustrates the concept. We usually require at least three indel-supporting
reads, and a percentage of at least 25–50% of support from spanning reads
where we consider only reads overlapping >5% of their total length.

Fig. 3. An indel candidate with six spanning reads. Three reads, i.e. 50% of
spanning reads, support the 2 bp deletion. The other three reads contradict
it. If reads overlapping <5 bp are not considered contradicting, then the
percentage of support is 60% (three out of five reads, as one contradicting
read is not considered).

2.6 Evaluation data
All single-end-only evaluation analyses were conducted using NCBI build
36 of the human genome as reference sequence. The paired-end evaluation
analysis uses NCBI build 37, as we use already mapped reads from
the 1000 Genomes project. Furthermore, we use the variation databases
dbSNP (Sherry et al., 2001) (version 130) and the Database of Genomic
Variants (Iafrate et al., 2004) (DGV indels version10). Details on used
datasets and program calls are given in Supplementary Materials S2 and S4.

2.6.1 1000 Genomes Project data We downloaded two files of Illumina
reads for HapMap individual NA12878, available from the 1000 Genomes
project page: one containing reads mapped/assigned to chromosome 22
and the other containing unmapped reads that could not be assigned to a
chromosome. We extracted a subset of 76 bp reads accounting for ∼20×
coverage and used all unmapped but anchored reads (∼1M) as input for
Pindel (version 2.2) and SplazerS in paired-end mode. Additionally, we used
a total of ∼40M unmapped 76 bp reads as input for SplazerS in single-
end mode. For a fair comparison, we use the same cutoff as Pindel and
thus require at least three indel-supporting reads. We furthermore require
the indel-supporting reads to constitute at least 50% of reads spanning the
putative indel coordinate. Again similar to Pindel’s settings, we set SplazerS’
maximum distance parameter such that deletions up to 8 kb can be detected.
Details on program calls are given in the Supplementary Material S2. We
compare the indel prediction results with two reference sets: (i) from the
1000 Genomes project (Durbin et al., 2010) and (ii) from a recent Sanger
sequencing study (Mills et al., 2011b).

2.6.2 Simulated single-end data For the simulation of single-end reads
(details given in Supplementary Material S4.1), we first generate a
manipulated reference sequence by randomly choosing 1000 known indels
from a reference set (dbSNP+DGV) and implanting them into human
chromosome 21. Our sampling procedure does not represent a realistic
indel distribution, but gives us sufficient sample size for testing different
indel size ranges, in particular medium- to large-sized indels. Furthermore,
we add single base substitutions at a rate of 0.001 to simulate SNPs. We
then generate single-end reads from the manipulated chromosome, using the
Mason read simulator (Holtgrewe, 2010) with typical Illumina sequencing
error settings (position-specific error probabilities increasing from 5’ to 3’
end). We repeated this simulation procedure with different read lengths:
100, 125 and 150 bp. Simulated coverages are 5, 10 and 30×. After mapping
the set of simulated reads onto the whole human reference genome with a
‘normal’ ungapped mapping approach [RazerS (Weese et al., 2009) with 5%
error rate], we retrieve all unmapped reads for subsequent split mapping. The
unmapped reads are split-mapped with SplazerS and, for comparison, with
GSNAP (version 2010-07-27) and BWA (version 0.5.8a). For all tools, only
one gap of at most length δ=5000 was allowed on each read. For BWA, we
tested the ‘log-scaled gap penalty for long deletions’ feature, but achieved
better results with the n-difference mode which we consequently use. We
then use the same indel detection method for all three tools (snpStore, see
Section 2.5), as it can detect indels of all size ranges. Only unique best hits
are used for indel calling for GSNAP, and only hits with mapping quality
>0 are used for BWA. We set the indel detection method very sensitively:
at least two reads and 25% of spanning reads are required to support the
indel. Parametrization details and program calls are given in Supplementary
Material S4.2.

2.6.3 Real single-end data We used our method in a large-scale
targeted resequencing study of 248 male patients with X-linked intellectual
disability collected by the EURO-MRX consortium (Kalscheuer,V.M. et al.,
manuscript in preparation). X chromosome exons were targeted by solution
hybridization selection (SureSelect, Agilent) (Johnston et al., 2010). Purified,
captured DNAwas then PCR amplified and sequenced on the Solexa Genome
Analyzer GAIIx, yielding single-end reads of length 76 bp. After mapping
onto the human reference genome using edit distance, all unmapped reads
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were retrieved for mapping with SplazerS. This constituted a total of almost
1.5 billion unmapped reads (on average ∼6M per patient). With m=23, split
mapping was rather strict. Indel detection was done using different post-
processing scripts. However, the same basic method was used, requiring that
at least three reads and 50% of spanning reads support the indel.

2.7 Evaluation methods
2.7.1 Indel comparison Comparing a predicted indel with a reference
indel is not trivial: indels, especially if located in a tandem repeat, can be
placed at distances >50 bp while still constituting the same basic indel event.
For indel rectification, we adopt the computation of the extended indel region,
as defined by Krawitz (Krawitz et al., 2010), which accounts for repeats and
gives a window of possible locations for each indel. Predicted indel size is
allowed to vary by 10% of reference indel size in all real datasets, but has to
be exactly the same as implanted indel size in the simulation experiments.

2.7.2 Sensitivity and PPV We will use the measures sensitivity and
positive predictive value (PPV) in the evaluation of the simulated single-
end data.

Sensitivity= TP

|Im| and PPV= TP

|Ip|
where true positives (TP) are computed by comparing the set of predicted

indels Ip with the set of implanted indels Im using the indel comparison
method of the previous subsection.

3 RESULTS
First, we will evaluate our method’s ability to accurately identify
and locate genomic indel variants in paired-end data, comparing
SplazerS with Pindel. Then we will investigate whether our method
is also able to accurately detect indels in the simulated single-end
datasets, comparing results with GSNAP and BWA. Finally, we will
demonstrate our method’s capabilities on real large-scale single-end
data from 248 patients, providing PCR validation for an especially
interesting scenario of predicted indels.

3.1 Paired-end sequencing data: anchored indel
detection proves high sensitivity

The results for comparing indels predicted by SplazerS and Pindel on
anchored paired-end reads are summarized in Table 1. Since we use
previously mapped reads from the 1000 Genomes Project webpage,
a large part of the chromosome is already covered by reads mapped
also with small indels. Thus, our detected indels do not constitute
the whole set of chromosome 22 indels, but rather additional ones
discovered through split mapping.

Using anchored reads only, the SplazerS approach yielded a total
of 392 indel calls, 301 (76.8%) of which are contained in at least
one of the two reference sets [1000G (Durbin et al., 2010) and
Mills (Mills et al., 2011b)]. Pindel called only 209 indels of which
142 (67.9%) are in one of the reference sets. The Pindel and SplazerS
call sets overlap in 130 indels (62.2% of Pindel call set). Of the 79
indels unique to Pindel, 44 (55.7%) correspond to an indel in the
reference set. Of the 262 indels unique to SplazerS, 195 (74.4%) are
in the reference set. These results do not only prove a significantly
higher sensitivity for SplazerS, but also indicate higher specificity.
Adding SplazerS’ unanchored split mapping results, the SplazerS set
of called indels increases from 392 to 534 (last column in Table 1).
Of the additional 142 indels, 90 (63.4%) are contained in one of
the reference sets. This indicates a slight decrease in indel calling

Table 1. Number of detected indels on 1000 Genomes Project dataset for
NA12878

Pindel SplazerS SplazerS
PE PE + SE

Small indels Deletions 88 183 233
Overlap 1000G 55 127 161
Overlap Mills 56 112 142

Insertions 62 105 145
Overlap 1000G 35 58 82
Overlap Mills 42 83 111

Medium indels Deletions 25 60 83
Overlap 1000G 4 17 19
Overlap Mills 8 24 32

Insertions 24 28 40
Overlap 1000G 0 0 0
Overlap Mills 12 21 26

Large deletions Deletions 10 13 27
Overlap 1000G 2 3 3
Overlap Mills 0 1 1

SV Deletions 0 3 6
Overlap 1000G 0 3 5
Overlap Mills 0 0 0

Pindel and SplazerS PE use anchored reads only, SplazerS PE + SE additionally uses
unanchored reads. Small indels are ≤10 bp. Medium indels are >10 bp, ≤50 bp. Large
deletions are >50 bp, ≤1000 bp. Large SV deletions are >1 kb, ≤5 kb.

specificity, but at the gain of much improved sensitivity: >30%
additional indels are attributed to single-end split mapping.

In summary, SplazerS was able to recover 391 known indels,
while Pindel could only recover 142. In particular, SplazerS is
more sensitive and robust in variant-rich regions, as revealed by
additional analyses on a high coverage 100 bp Illumina read dataset
(Supplementary Material S3 and Fig. S1). Our analyses suggest that
Pindel’s sensitivity is between 50% and 70% of SplazerS’ sensitivity
on anchored reads only (Table 1 and Supplementary Table S2).
Applying the edit distance feature exhibited a further increase in
sensitivity of ∼2.6% (Supplementary Table S2).

3.2 Single-end reads: simulations demonstrate high
accuracy of split read approach

On the simulated single-end read dataset, we tested the indel
prediction accuracy of different tools for varying read lengths
(100–150 bp) and coverages (5–30×). Figure 4 shows the results
in terms of sensitivity. Corresponding p measurements are given in
Supplementary Figure S2.

Table 2 shows the results in terms of sensitivity and PPV for
125 bp reads at ∼30× coverage, dividing indels into different size
ranges: three small indel classes for insertions/deletions of 1–3 bp,
4–9 bp and 10–50 bp in size; and three large structural variant classes
for sizes 51–500 bp, 501 bp–1 kb and >1 kb.

Figure 4 shows how sensitivity increases with coverage and with
read length. In all settings, SplazerS is the most sensitive and most
precise tool. At 30×, it already recovers >90% of implanted indels
on the 100 bp reads; for the 150 bp reads sensitivity reaches >95%.
GSNAP is always a few percentage points behind SplazerS, with
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A B C

Fig. 4. Sensitivity of indel detection for increasing coverage and increasing read length. (A) Read length 100 bp. (B) Read length 125 bp. (C) Read length
150 bp. Note the axis scaling.

SplazerS’ lead being more pronounced on longer reads and higher
coverage (1.8% lead on 100 bp at 5× compared with 4.3% on
150 bp at 30×). Due to its exact 12mer matching approach, GSNAP
systematically fails to detect certain indels, even in high coverage
data. BWA is less sensitive and less precise than the other tools.
Table 2 shows that BWA’s sensitivity mainly suffers from missed
deletions >50 bp. With increased read length, it can also detect
larger indels and thus its overall sensitivity increases.

For indels <10 bp, BWA is the most sensitive tool, but with the
lowest PPV. For indels ≥10 bp, SplazerS has the highest sensitivity.
Furthermore, it maintains the highest PPV in all indel categories.
Most notably, SplazerS achieves the highest sensitivities in the SV
deletion categories. Both GSNAP and SplazerS exhibit a ‘temporary’
drop in sensitivity for the smallest SV deletion class. The low
sensitivity is due to low complexity and repeat sequences where
reads are often ambiguously mappable or even wrongly mapped
without a middle gap. Nevertheless, SplazerS maintains a high PPV
and higher sensitivity than GSNAP for these difficult-to-map indels.
In order to investigate whether our results are robust with respect to
different indel calling programs, we conducted an additional analysis
replacing our in-house tool snpStore with Dindel (Albers et al.,
2010). This analysis exhibited the same relative sensitivity results
for SplazerS, GSNAP and BWA, and furthermore demonstrated that
SplazerS was again the most accurate tool in terms of sensitivity as
well as PPV (Supplementary Table S4).

Table 2. SN and PPV results of simulations at 30× coverage with read
length of 125 bp, for different indel size categories

SplazerS GSNAP BWA

SN PPV SN PPV SN PPV

Ins 10–30 bp 99.35 99.33 95.87 98.63 95.21 96.83
4–9 bp 98.29 98.21 97.44 96.62 100.0 76.39
1–3 bp 98.78 99.65 98.60 99.47 98.94 93.31

Del 1–3 bp 96.03 99.80 96.00 98.74 96.99 92.30
4–9 bp 94.54 100.0 92.26 100.0 94.54 87.17
10–50 bp 92.73 99.52 85.18 98.12 87.51 93.71

SV Del 51–500 bp 70.98 98.38 61.13 89.37 0 NA
0.5–1 kb 94.69 100.0 92.47 97.56 0 NA
1–5 kb 100.00 94.44 96.67 90.61 0 NA

Each category has at least 50 representatives. SN, sensitivity; PPV, positive predictive
value.

Fig. 5. Histogram of indels of sizes >5 bp and ≤40 bp. Indels are more
abundant in non-coding sequences. The majority of indels in coding
sequences are multiples of three, i.e. codon-length.

3.3 Application to real single-end data demonstrates
versatility

Using SplazerS in the targeted exon resequencing study, on average
67 indels were predicted per patient. The overlap of predicted indels
with dbSNP and DGV was between 38.89% and 71.79% per patient,
with mean overlap of 54.99%. Of the total set of indels predicted in
at least one patient, 39.02% were present in dbSNP or DGV.

Figure 5 shows the size distribution of all indels >5 bp (the
majority of smaller indels were predicted with a different method
using edit distance alignments). As expected, the majority of indels
is located in non-coding sequences (417 out of 456). Non-coding
indels occur mostly in tandem repeat regions in units of 2, 3 or 4. Of
the 39 coding indels, 29 (74.35%) are multiples of 3, usually having
lesser impact on the protein level.

Large deletions ≥100 bp are rather rare (61 in total). On average,
three large deletions were predicted per patient. Interestingly, we
observed a strong variance between patients. Closer inspection
revealed that locations of large deletions often cluster on the
chromosome. Figure 6A visualizes these clusters in 1 Mb bins over
the X chromosome. Surprisingly, deletions do not only co-localize,
but often their boundaries also coincide exactly with annotated
exon–intron boundaries. Figure 6B shows one such case where five
predicted deletions span all introns of the PQBP1 gene. These ‘intron
deletions’ strongly suggest the presence of a retrocopy of this gene.

624

 at Freie U
niversitaet B

erlin on Septem
ber 12, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


[17:53 27/2/2012 Bioinformatics-bts019.tex] Page: 625 619–627

Detecting genomic indels with exact breakpoints

Fig. 6. (A) Histogram of predicted deletions ≥100 bp over their genomic coordinate on chromosome X. Clusters of large deletions are often due to retroposed
genes, where spliced introns are missing. (B) A screenshot of the UCSC Genome Browser shows five large deletions that coincide exactly with the introns of
the PQBP1 gene. The existence of this complete retrocopy of PQBP1 was confirmed by PCR.

PCR experiments with several primer pairs confirmed a complete,
possibly functional retrocopy of PQBP1. This finding is particularly
interesting, as it has been shown previously that mutations in
PQBP1 cause X-linked intellectual disability (Kalscheuer et al.,
2003; Lenski et al., 2004). Additional (partial) retrocopies were
predicted for FAM104B, MSN, MPP1, EIF1AX, RBMX and OPHN1.
In the OPHN1 gene, large deletions spanned 19 introns, causing the
large peak close to the centromer in Figure 6A.

3.4 Running times and memory
SplazerS’ high sensitivity comes at the price of increased running
time compared with index-based heuristic mappers. Nevertheless,
it is applicable to large-scale datasets such as the one in the
previous section. In particular, the parameter m can be used to
achieve a significant speedup without compromising sensitivity
for high-coverage datasets and longer read lengths (Table 3 and
Supplementary Table S2). The observed memory increase with m
is explained by a larger value of q being used for q-gram index
construction. Running time disadvantage nearly disappears when

Table 3. Running time and memory measurements for 100 000 simulated
125 bp reads

BWA GSNAP SplazerS SplazerS
m=16 m=20

chr21
index 49.8 s 12.2 s – –
time 44.4 s 49.7 s 143.5 s 52.9 s
space 154 Mb 122 Mb 185 Mb 1.2 Gb

genome
index 94.0 m 16.9 m – –
time 10.8 m 18.2 m 193.2 m 57.4 m
space 3.7 Gb 4.6 Gb 3.5 Gb 5.6 Gb

SplazerS runs are shown for different minimum match lengths (m). BWA and GSNAP
require an additional preprocessing step for index construction.

mapping onto a smaller reference sequences, as demonstrated by
mapping the simulation reads onto chromosome 21 only. Mapping
was performed on a computing cluster, splitting up the reads into
batches of 100K. Future developments will include parallelization
of SplazerS.

4 DISCUSSION
The availability of various kinds of sequencing data, i.e. derived
from different sequencing technologies and protocols, has fueled the
development of various computational tools for indel identification
[for reviews, see Alkan et al. (2011) and Medvedev et al.
(2009)]. Often the overlap of predicted indels between different
computational methods is low (Mills et al., 2011a), indicating that
none of the methods is fully comprehensive and a satisfactory
solution is yet to be found. Therefore, a comprehensive method
is likely to use an integrative approach, combining the strengths of
different methods.

The split read mapping approach has its strength in the potential
to exactly predict indel size and location. Early next-generation
technologies yielded very short read lengths (36 bp) where only
anchored split mapping was feasible, with the mapping search space
greatly reduced by a confidently mapped paired end (Ye et al., 2009).
However, advances in sequencing technology have led to single-
end reads long enough to reliably predict long deletions and also
medium-sized insertions without anchoring. SplazerS supports both
anchored paired-end split mapping as well as unanchored single-
end split mapping, which is a unique feature among split read
mapping tools. By adding unmapped paired-end reads and treating
them as single-end data, a significant increase in sensitivity could
be demonstrated.

In our comparisons with Pindel (Ye et al., 2009), which to our
knowledge is the most widely used paired-end split read indel
detection method, and with state-of-the-art single-end split read
aligners, SplazerS showed highest PPV and highest sensitivity,
especially in variant-rich regions. This strength may prove especially
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valuable when mapping reads from highly mutated or diverged
genomes to a related reference, as is the case in cancer genome
sequencing (Stratton, 2011), or in evolutionary genetics studies such
as Green et al. (2010) where Neanderthal DNA was mapped onto
a human and a chimpanzee reference sequence.

On real data, a large overlap with annotated variation was obtained
when using SplazerS. In addition, predicted indels followed the
expected pattern of indel size distributions for coding as well as non-
coding sequences (Durbin et al., 2010; Ng et al., 2009). Furthermore,
the percentage of coding, in-frame indels is in agreement with the
previous studies (Ng et al., 2009).

Altogether we show that our method is versatile as it is applicable
to anchored paired-end as well as unanchored and single-end data,
and is not constrained to short read lengths. Even more, its sensitivity
proved to further increase with read length, making its application
to upcoming longer reads promising. While not explicitly tested,
SplazerS’ edit-distance feature will also allow application to 454
sequencing reads (Wheeler et al., 2008).

In this work, we used the mapping results of SplazerS in
conjunction with a simple indel detection method. Previously, it has
been shown that realignment of reads at indel candidate positions
can significantly improve indel prediction accuracy (Albers et al.,
2010; Homer and Nelson, 2010). We expect that SplazerS’ support
for SAM output format will make it easy to integrate with other
indel detection tools, which may further improve accuracy of split
read indel detection.

In contrast to Pindel, inversions are not yet handled by SplazerS.
We are currently investigating strategies to generalize the split-
read approach to detect complex structural variants including
interchromosomal translocations which neither Pindel nor SplazerS
can handle. However, the successful detection of retrocopy events
suggests that SplazerS may also be applicable for spliced mapping
of RNA-seq data.
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