79 research outputs found

    Genetic variation in Coffea canephora L. (Var. Robusta) accessions from the founder gene pool evaluated with ISSR and RAPD

    Get PDF
    Discovered in Congo in 1898, Coffea canefora var. robusta accounts for 25 to 40% of the coffee grown in the world. Most genetic diversity of robusta coffee accessions conserved in ex situ collections hasbeen estimated from morphological characteristics. There are limited studies on genetic variability and diversity in C. robusta. Inter-simple sequence repeat (ISSR) and random amplified polymorphic DNA(RAPD) markers were used to assess the level of genetic variability among robusta coffee accessions from the founder gene pool in the Democratic Republic of Congo (DRC). The present study clearlyestablished the high variability in the Congolese genepool. RAPD primers detected a higher level of polymorphic loci (95%) than ISSR markers (52%). Each accession could be genotyped using RAPDmarkers and both markers were efficient in revealing the genetic variability. Jaccard’s similarity coefficients generated to determine the genetic distances among accessions, revealed that most of theaccessions were genetically distant from each other. The accessions tested represent useful genetic materials for breeding for resistance to tracheomycose and other traits in DRC

    Unsuccessful Cassava Brown Streak Disease (CBSD) evaluation attempts in western Democratic Republic of Congo and implications with cassava root necrosis disease (CRND) etiology

    Get PDF
    Open Access ArticleCassava brown streak disease (CBSD) is the second most important virus disease after Cassava mosaic disease (CMD), infecting cassava (ManihotesculetaCrantz) in Africa. The disease is caused by two distinct viruses, Cassava brown streak virus [2, 3] and Ugandan Cassava brown streak virus (family, Potyviridae: genus, Ipomovirus). Transmission of CBSV from one plant to another is reported to occur through grafting CBSV-free with infected cuttings and subsequent dissemination by infected cuttings. The basic approach to control of CBSD is selecting planting material from symptomless mother plants. Graft inoculation is the most efficient and effective of the techniques for CBSD virus transmission and consequently cuttings are the most effective way of the disease spreading. In early 2000s, cassava root necrosis similar to those of CBSD were reported in western provinces of Democratic Republic of Congo (RDC) (Kinshasa and Kongo Central) and up to date PCR diagnoses did not detect any causal agent related to the observed symptoms and the disease which was still referred as ‘CBSD-like disease’. Due to lack of molecular data and the similarity of root symptoms with CBSD, the existence of a virus has always been suspected to be the cause of CBSD-like propagation. Thus, 2 field experiments were proposed in order to verify the existence of a systematic transmission of a possible CBSD related virus, knowing that CBSD viruses are transmitted efficiently by cuttings. The first trial focused on the field evaluation of CBSD – like infected and apparently uninfected planting materials, while the second trial involved the importation of tanzanian CBSD resistant genotypes for evaluation in INERA Mvuazi research center under CBSD-like infection conditions. Results of the first trial did not show a systemic transmission of any CBSD-like pathogen while CBSD-resistant parents involved in the second trial all succumbed to CBSD-like disease

    Assessing the severity and the incidence of Cassava Root Necrosis Disease (CRND) in western Democratic Republic of Congo

    Get PDF
    Open Access ArticleCassava is the staple food in the Democratic Republic of Congo (DRC) where both the roots and leaves are consumed. This crop is susceptible to several viral diseases, including Cassava Mosaic Disease(CMD) and Cassava Brown Streak Disease(CBSD) in eastern DRC. Following earlier studies that show root necrosis occurring in western DR Care not due to CBSD but to Cassava Root Necrosis Disease (CRND), an exploratory survey was conducted in western DRC from 2016 to 2017 in order to determine the distribution, the severity and the incidence of this disease (previously known as CBSD-like disease). NGS ( Next Generation Sequencing) results confirmed all the previous negative results obtained using PCR and CBSV primers. This suggests that microorganisms such as bacteria or fungi could be responsible for cassava root necrosis in western DRC and is not CBSD as predicted. Five provinces (Bas-Congo, Kinshasa, Bandundu, Equateur and Kasai-Oriental) were surveyed and data were collected according to the harmonized protocols adopted by countries within the West African Virus Epidemiology (WAVE) project. Statistical tests (ANOVA) performed on our data showed that CRND severity did not vary significantly among the provinces of Kinshasa, Bandundu and Bas-Congo which are the areas most affected by the disease. Bas-Congo and Kinshasa provinces presented the highest maximum disease severity (score 3 and 5 respectively), while Equateur province had the lowest disease severity score. Equateur province also had the highest percentage of healthy plants and few plants presented mild symptoms. The overall average of cassava root necrosis severity in western DRC ranged around 1.88 ± 0.08, an approximate score of 2. The overall mean incidence of CRND in western DRC was 22.24 ± 2.4% but reached 100% in localities considered as hotspots (Lukuakua in Bas-Congo and Nguma in Plateau des Batékés). The behaviour of cassava varieties against CRND is similar with CBSD in East Africa, most of improved varieties and landraces are susceptible to both diseases. Correlation analyses showed a positive correlation (r = 0.6940) between severity and incidence of CRND. Therefore, Bas-Congo province is the most affected province, while the province of Equateur is the least affected province in western DRC. Further investigations, including genomic surveillance, should also be conducted in the eastern DRC where CBSD is confirmed to know if CRND is found in conjunction with CBSD and to report possible instances of mixed infections. For medium-term disease control, our study suggests that the development and deployment of control measures including cultivars with resistance to CRND and CBSD should be a priority

    Direct association between rainfall and non-typhoidal <i>Salmonella</i> bloodstream infections in hospital-admitted children in the Democratic Republic of Congo

    Get PDF
    Abstract Non-typhoidal Salmonella (NTS) ranks first among causes of bloodstream infection in children under five years old in the Democratic Republic of Congo and has a case fatality rate of 15%. Main host-associated risk factors are Plasmodium falciparum malaria, anemia and malnutrition. NTS transmission in sub-Saharan Africa is poorly understood. NTS bloodstream infections mostly occur during the rainy season, which may reflect seasonal variation in either environmental transmission or host susceptibility. We hypothesized that environment- and host-associated factors contribute independently to the seasonal variation in NTS bloodstream infections in children under five years old admitted to Kisantu referral hospital in 2013–2019. We used remotely sensed rainfall and temperature data as proxies for environmental factors and hospital data for host-associated factors. We used principal component analysis to disentangle the interrelated environment- and host-associated factors. With timeseries regression, we demonstrated a direct association between rainfall and NTS variation, independent of host-associated factors. While the latter explained 17.5% of NTS variation, rainfall explained an additional 9%. The direct association with rainfall points to environmental NTS transmission, which should be explored by environmental sampling studies. Environmental and climate change may increase NTS transmission directly or via host susceptibility, which highlights the importance of preventive public health interventions

    Efficacy and safety of acoziborole in patients with human African trypanosomiasis caused by Trypanosoma brucei gambiense: a multicentre, open-label, single-arm, phase 2/3 trial

    Get PDF
    Summary Background Human African trypanosomiasis caused by Trypanosoma brucei gambiense (gambiense HAT) in patients with late-stage disease requires hospital admission to receive nifurtimox-eflornithine combination therapy (NECT). Fexinidazole, the latest treatment that has been recommended by WHO, also requires systematic admission to hospital, which is problematic in areas with few health-care resources. We aim to assess the safety and efficacy of acoziborole in adult and adolescent patients with gambiense HAT. Methods This multicentre, prospective, open-label, single-arm, phase 2/3 study recruited patients aged 15 years or older with confirmed gambiense HAT infection from ten hospitals in the Democratic Republic of the Congo and Guinea. Inclusion criteria included a Karnofsky score less than 50, ability to swallow tablets, a permanent address or traceability, ability to comply with follow-up visits and study requirements, and agreement to hospital admission during treatment. Oral acoziborole was administered as a single 960 mg dose (3 × 320 mg tablets) to fasted patients. Patients were observed in hospital until day 15 after treatment administration then for 18 months as outpatients with visits at 3, 6, 12, and 18 months. The primary efficacy endpoint was the success rate of acoziborole treatment at 18 months in patients with late-stage gambiense HAT (modified intention-to-treat [mITT] population), based on modified WHO criteria. A complementary post-hoc analysis comparing the 18-month success rates for acoziborole and NECT (using historical data) was performed. This study is registered at ClinicalTrials.gov, NCT03087955. Findings Between Oct 11, 2016, and March 25, 2019, 260 patients were screened, of whom 52 were ineligible and 208 were enrolled (167 with late-stage and 41 with early-stage or intermediate-stage gambiense HAT; primary efficacy analysis set). All 41 (100%) patients with early-stage or intermediate-stage and 160 (96%) of 167 with late-stage disease completed the last 18-month follow-up visit. The mean age of participants was 34·0 years (SD 12·4), including 117 (56%) men and 91 (44%) women. Treatment success rate at 18 months was 95·2% (95% CI 91·2-97·7) reached in 159 of 167 patients with late-stage gambiense HAT (mITT population) and 98·1% (95·1-99·5) reached in 159 of 162 patients (evaluable population). Overall, 155 (75%) of 208 patients had 600 treatment-emergent adverse events. A total of 38 drug-related treatment-emergent adverse events occurred in 29 (14%) patients; all were mild or moderate and most common were pyrexia and asthenia. Four deaths occurred during the study; none were considered treatment related. The post-hoc analysis showed similar results to the estimated historical success rate for NECT of 94%. Interpretation Given the high efficacy and favourable safety profile, acoziborole holds promise in the efforts to reach the WHO goal of interrupting HAT transmission by 2030. Funding Bill & Melinda Gates Foundation, UK Aid, Federal Ministry of Education and Research, Swiss Agency for Development and Cooperation, MĂ©decins Sans FrontiĂšres, Dutch Ministry of Foreign Affairs, Norwegian Agency for Development Cooperation, Norwegian Ministry of Foreign Affairs, the Stavros Niarchos Foundation, Spanish Agency for International Development Cooperation, and the Banco Bilbao Vizcaya Argentaria Foundation. Translation For the French translation of the abstract see Supplementary Materials section

    Ecological drivers of helminth infection patterns in the Virunga Massif mountain gorilla population

    Get PDF
    The Virunga Massif mountain gorilla population has been periodically monitored since the early 1970s, with gradually increasing effort. The population declined drastically in the 1970s, but the numbers stabilized in the 1980s. Since then, the population has been steadily increasing within their limited habitat fragment that is surrounded by a dense human population. We examined fecal samples collected during the Virunga 2015–2016 surveys in monitored and unmonitored gorilla groups and quantified strongylid and tapeworm infections using egg counts per gram to determine environmental and host factors that shape these helminth infections. We showed that higher strongylid infections were present in gorilla groups with smaller size of the 500-m buffered minimum-convex polygon (MCP) of detected nest sites per gorilla group, but in higher gorilla densities and inhabiting vegetation types occurring at higher elevations with higher precipitation and lower temperatures. On the contrary, the impact of monitoring (habituation) was minor, detected in tapeworms and only when in the interaction with environmental variables and MCP area. Our results suggest that the Virunga mountain gorilla population may be partially regulated by strongylid nematodes at higher gorilla densities. New health challenges are probably emerging among mountain gorillas because of the success of conservation efforts, as manifested by significant increases in gorilla numbers in recent decades, but few possibilities for the population expansion due to limited amounts of habitat

    From concept to action: a united, holistic and One Health approach to respond to the climate change crisis

    Get PDF
    It is unequivocal that human influence has warmed the planet, which is seriously affecting the planetary health including human health. Adapting climate change should not only be a slogan, but requires a united, holistic action and a paradigm shift from crisis response to an ambitious and integrated approach immediately. Recognizing the urgent needs to tackle the risk connection between climate change and One Health, the four key messages and recommendations that with the intent to guide further research and to promote international cooperation to achieve a more climate-resilient world are provided

    IMA Genome - F16 – Draft genome assemblies of Fusarium marasasianum, Huntiella abstrusa, two Immersiporthe knoxdaviesiana isolates, Macrophomina pseudophaseolina, Macrophomina phaseolina, Naganishia randhawae, and Pseudocercospora cruenta

    Get PDF
    Draft genome assembly of Fusarium marasasianum Introduction Many plants are thought to have at least one Fusarium-associated disease with more than 80% of economically important plants affected by at least one Fusarium disease (Leslie and Summerell 2006). The socioeconomic importance of Fusarium is particularly evident when considering the Fusarium fujikuroi species complex (FFSC, sensu Geiser et al. 2021). This monophyletic group contains 65 species and numerous cryptic species (Yilmaz et al. 2021). More than 50 species in the FFSC have publicly available genomes (www.ncbi.nlm.nih.gov), indicative of their economic importance. A number of recent studies showed that the FFSC complex contains four large clades (Herron et al. 2015; Sandoval-Denis et al. 2018; Yilmaz et al. 2021). One of these corresponds to the so-called “American” clade that was initially proposed to reflect the biogeography of the species it contains (O’Donnell et al. 1998). For example, Fusarium circinatum, the pine pitch canker pathogen, is thought to be native to Mexico and Central America (Drenkhan et al. 2020), where it likely co-evolved with its Pinus hosts (Herron et al. 2015; O’Donnell et al. 1998; Wikler and Gordon 2000). The American clade also includes five additional species associated with Pinus species in Colombia. These species are F. fracticaudum, F. pininemorale, F. parvisorum, F. marasasianum, and F. sororula, of which F. parvisorum, F. marasasianum, and F. sororula displayed levels of pathogenicity that were comparable to those of F. circinatum on susceptible Pinus species (Herron et al. 2015). The risk that the various American clade species pose to forestry in Colombia and globally has provided the impetus for projects aiming to sequence their genomes. To complement the genomic resources available for F. circinatum (Fulton et al. 2020; van der Nest et al. 2014a; Van Wyk et al. 2018; Wingfield et al. 2012, 2018a), the genomes of F. pininemorale (Wingfield et al. 2017), F. fracticaudum (Wingfield et al. 2018b) and F. sororula (van der Nest et al. 2021) have been published. Here we present the whole genome sequence for the pine pathogen F. marasasianum, named after the late South African professor Walter “Wally” F.O. Marasas (Wingfield and Crous 2012) who specialised in the taxonomy of Fusarium species and their associated mycotoxins
    • 

    corecore