159 research outputs found

    Understanding the functional impact of copy number alterations in breast cancer using a network modeling approach

    Full text link
    Copy number alterations (CNAs) are thought to account for 85% of the variation in gene expression observed among breast tumours. The expression of cis-associated genes is impacted by CNAs occurring at proximal loci of these genes, whereas the expression of trans-associated genes is impacted by CNAs occurring at distal loci. While a majority of these CNA-driven genes responsible for breast tumourigenesis are cis-associated, trans-associated genes are thought to further abet the development of cancer and influence disease outcomes in patients. Here we present a network-based approach that integrates copy-number and expression profiles to identify putative cis- and trans-associated genes in breast cancer pathogenesis. We validate these cis- and trans-associated genes by employing them to subtype a large cohort of breast tumours obtained from the METABRIC consortium, and demonstrate that these genes accurately reconstruct the ten subtypes of breast cancer. We observe that individual breast cancer subtypes are driven by distinct sets of cis- and trans-associated genes. Among the cis-associated genes, we recover several known drivers of breast cancer (e.g. CCND1, ERRB2, MDM2 and ZNF703) and some novel putative drivers (e.g. BRF2 and SF3B3). siRNA-mediated knockdown of BRF2 across a panel of breast cancer cell lines showed significant reduction specifically in cell proliferation in HER2+ lines, thereby indicating that BRF2 could be a context-dependent oncogene and potentially targetable in these lines. Among the trans-associated genes, we identify modules of immune-response (CD2, CD19, CD38 and CD79B), mitotic/cell-cycle kinases (e.g. AURKB, MELK, PLK1 and TTK), and DNA-damage response genes (e.g. RFC4 and FEN1).Comment: 23 pages, 2 tables, 7 figure

    Platinum-(IV)-derivative satraplatin induced G2/M cell cycle perturbation via p53-p21(waf1/cip1)-independent pathway in human colorectal cancer cells

    Get PDF
    Platinum-(IV)-derivative satraplatin represents a new generation of orally available anti-cancer drugs that are under development for the treatment of several cancers. Understanding the mechanisms of cell cycle modulation and apoptosis is necessary to define the mode of action of satraplatin. In this study, we investigate the ability of satraplatin to induce cell cycle perturbation, clonogenicity loss and apoptosis in colorectal cancer (CRC) cells.Platinum-(IV)-derivative satraplatin represents a new generation of orally available anti-cancer drugs that are under development for the treatment of several cancers. Understanding the mechanisms of cell cycle modulation and apoptosis is necessary to define the mode of action of satraplatin. In this study, we investigate the ability of satraplatin to induce cell cycle perturbation, clonogenicity loss and apoptosis in colorectal cancer (CRC) cells

    Epigenetically silenced miR-34b/c as a novel faecal-based screening marker for colorectal cancer

    Get PDF
    BACKGROUND: MicroRNAs are tiny non-coding small endogenous RNAs that regulate gene expression by translational repression, mRNA cleavage and mRNA inhibition. The aim of this study was to investigate the hypermethylation of miR-34b/c and miR-148a in colorectal cancer, and correlate this data to clinicopathological features. We also aimed to evaluate the hypermethylation of miR-34b/c in faeces specimens as a novel non-invasive faecal-DNA-based screening marker. METHODS: The 5-aza-2'-deoxycytidine treatment and methylation-specific PCR were carried out to detect the hypermethylation of miR-34b/c and miR-148a. RESULTS: The miR-34b/c hypermethylation was found in 97.5% (79 out of 82) of primary colorectal tumours, P=0.0110. In 75% (21 out of 28) of faecal specimens we found a hypermethylation of miR-34b/c while only in 16% (2 out of 12) of high-grade dysplasia. In addition, miR-148a was found to be hypermethylated in 65% (51 out of 78) of colorectal tumour tissues with no significant correlation to clinicopathological features. However, a trend with female gender and advanced age was found, P=0.083. We also observed a trend to lower survival rate in patients with miR-148a hypermethylation with 10-year survival probability: 48 vs 65%, P=0.561. CONCLUSIONS: These findings show that aberrant hypermethylation of miR-34b/c could be an ideal class of early screening marker, whereas miR-148a could serve as a disease progression follow-up marker

    LSD1 activation promotes inducible EMT programs and modulates the tumour microenvironment in breast cancer

    Get PDF
    Complex regulatory networks control epithelial-to-mesenchymal transition (EMT) but the underlying epigenetic control is poorly understood. Lysine-specific demethylase 1 (LSD1) is a key histone demethylase that alters the epigenetic landscape. Here we explored the role of LSD1 in global epigenetic regulation of EMT, cancer stem cells (CSCs), the tumour microenvironment, and therapeutic resistance in breast cancer. LSD1 induced pan-genomic gene expression in networks implicated in EMT and selectively elicits gene expression programs in CSCs whilst repressing non-CSC programs. LSD1 phosphorylation at serine-111 (LSD1-s111p) by chromatin anchored protein kinase C-theta (PKC-ΞΈ), is critical for its demethylase and EMT promoting activity and LSD1-s111p is enriched in chemoresistant cells in vivo. LSD1 couples to PKC-ΞΈ on the mesenchymal gene epigenetic template promotes LSD1-mediated gene induction. In vivo, chemotherapy reduced tumour volume, and when combined with an LSD1 inhibitor, abrogated the mesenchymal signature and promoted an innate, M1 macrophage-like tumouricidal immune response. Circulating tumour cells (CTCs) from metastatic breast cancer (MBC) patients were enriched with LSD1 and pharmacological blockade of LSD1 suppressed the mesenchymal and stem-like signature in these patient-derived CTCs. Overall, LSD1 inhibition may serve as a promising epigenetic adjuvant therapy to subvert its pleiotropic roles in breast cancer progression and treatment resistance.T. Boulding, R.D. McCuaig, A. Tan, K. Hardy, F. Wu, J. Dunn, M. Kalimutho, C.R. Sutton, J.K. Forwood, A.G. Bert, G.J. Goodall, L. Malik, D. Yip, J.E. Dahlstrom, A. Zafar, K.K. Khanna, S. Ra

    microRNAs in colon cancer : a roadmap for discovery

    Get PDF
    Cancer omics data are exponentially created and associated with clinical variables, and important findings can be extracted based on bioinformatics approaches which can then be experimentally validated. Many of these findings are related to a specific class of non-coding RNA molecules called microRNAs (miRNAs) (post-transcriptional regulators of mRNA expression). The related research field is quite heterogeneous and bioinformaticians, clinicians, statisticians and biologists, as well as data miners and engineers collaborate to cure stored data and on new impulses coming from the output of the latest Next Generation Sequencing technologies. Here we review the main research findings on miRNA of the first 10 years in colon cancer research with an emphasis on possible uses in clinical practice. This review intends to provide a road map in the jungle of publications of miRNA in colorectal cancer, focusing on data availability and new ways to generate biologically relevant information out of these huge amounts of data

    LSD1 activation promotes inducible EMT programs and modulates the tumour microenvironment in breast cancer

    Get PDF
    Complex regulatory networks control epithelial-to-mesenchymal transition (EMT) but the underlying epigenetic control is poorly understood. Lysine-specific demethylase 1 (LSD1) is a key histone demethylase that alters the epigenetic landscape. Here we explored the role of LSD1 in global epigenetic regulation of EMT, cancer stem cells (CSCs), the tumour microenvironment, and therapeutic resistance in breast cancer. LSD1 induced pan genomic gene expression in networks implicated in EMT and selectively elicits gene expression programs in CSCs whilst repressing non-CSC programs. LSD1 phosphorylation at serine-111 (LSD1-s111p) by chromatin anchored protein kinase C-theta (PKC-ΞΈ), is critical for its demethylase and EMT promoting activity and LSD1-s111p is enriched in chemo resistant cells in vivo. LSD1 couples to PKC-ΞΈ on the mesenchymal gene epigenetic template promotes LSD1-mediated gene induction. In vivo, chemotherapy reduced tumour volume, and when combined with an LSD1 inhibitor, abrogated the mesenchymal signature and promoted an innate, M1 macrophage-like tumouricidal immune response. Circulating tumour cells (CTCs) from metastatic breast cancer (MBC) patients were enriched with LSD1 and pharmacological blockade of LSD1 suppressed the mesenchymal and stem-like signature in these patient derived CTCs. Overall, LSD1 inhibition may serve as a promising epigenetic adjuvant therapy to subvert its pleiotropic roles in breast cancer progression and treatment resistanc

    Germline polymorphisms in an enhancer of PSIP1 are associated with progression-free survival in epithelial ovarian cancer.

    Get PDF
    Women with epithelial ovarian cancer (EOC) are usually treated with platinum/taxane therapy after cytoreductive surgery but there is considerable inter-individual variation in response. To identify germline single-nucleotide polymorphisms (SNPs) that contribute to variations in individual responses to chemotherapy, we carried out a multi-phase genome-wide association study (GWAS) in 1,244 women diagnosed with serous EOC who were treated with the same first-line chemotherapy, carboplatin and paclitaxel. We identified two SNPs (rs7874043 and rs72700653) in TTC39B (best P=7x10-5, HR=1.90, for rs7874043) associated with progression-free survival (PFS). Functional analyses show that both SNPs lie in a putative regulatory element (PRE) that physically interacts with the promoters of PSIP1, CCDC171 and an alternative promoter of TTC39B. The C allele of rs7874043 is associated with poor PFS and showed increased binding of the Sp1 transcription factor, which is critical for chromatin interactions with PSIP1. Silencing of PSIP1 significantly impaired DNA damage-induced Rad51 nuclear foci and reduced cell viability in ovarian cancer lines. PSIP1 (PC4 and SFRS1 Interacting Protein 1) is known to protect cells from stress-induced apoptosis, and high expression is associated with poor PFS in EOC patients. We therefore suggest that the minor allele of rs7874043 confers poor PFS by increasing PSIP1 expression.This project has been supported by a grant from Cancer Australia. The Mayo Clinic GWAS was supported by R01CA114343 (Haplotype-based genome screen for ovarian cancer loci). The Ovarian Cancer Association Consortium is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith. The AOCS was supported by the U.S. Army Medical Research and Materiel Command under DAMD17-01-1-0729, the National Health and Medical Research Council (NHMRC) of Australia (grants 400281, 400413), Cancer Council Victoria, Cancer Council Queensland, Cancer Council New South Wales, Cancer Council South Australia, The Cancer Foundation of Western Australia, and Cancer Council Tasmania. G. Chenevix-Trench is a Senior Principal Research fellow of the NHMRC. Y. Lu is funded by NHMRC grant 496675, S. MacGregor is supported by an NHMRC career development award, S. Edwards and J. French are supported by Fellowships from the National Breast Cancer Foundation (NBCF) Australia. The QIMR Berghofer groups were supported by NHMRC project grants (1051698 to SM and 1058415 to SLE and JDF) and a Weekend to End Women’s Cancer Research Grant (to SLE). A deFazio is funded by the University of Sydney Cancer Research Fund and A deFazio and PR Harnett are funded by the Cancer Institute NSW through the Sydney-West Translational Cancer Research Centre. B. Gao is supported by NHMRC and Cancer Institute NSW scholarship. KBM and MO’R are funded by CR-UK. The Bavarian study (BAV) was supported by ELAN Funds of the University of Erlangen-Nuremberg. HSK would like to thank Ira Schwaab for her tireless work on sample preparation. The Belgian study (BEL) was funded by Nationaal Kankerplan and we would like to thank Gilian Peuteman, Thomas Van Brussel and Dominiek Smeets for technical assistance. The Japanese study (JPN) was funded by a Grant-in-Aid for the Third Term Comprehensive 10-Year Strategy for Cancer Control from the Ministry of Health, Labour and Welfare. The International Collaborative Ovarian Neoplasm study (ICON)7 trial team would like to thank the Medical Research Council (MRC) Clinical Trial Unit (CTU) at the University of London (UCL), the ICON7 Translational Research Sub-group, and the University of Leeds for their work on the coordination of samples and data from the ICON7 trial. The LAX study (Women’s Cancer Program) was supported by the American Cancer Society Early Detection Professorship (120950-SIOP-06-258-06-COUN) and Entertainment Industry Foundation. Funding for MALOVA (MAL) was provided by research grant RO1 CA 61107 from the National Cancer Institute, Bethesda, MD; research grant 94 222 52 from the Danish Cancer Society, Copenhagen, Denmark; and the Mermaid I project. The Mayo Clinic study (MAYO) was supported by R01 CA122443, P50 CA136393. The Oregon study (ORE) was funded by the Sherie Hildreth Ovarian Cancer Research Fund and the OHSU Foundation. We would like to thank all members of Scottish Gynaecological Clinical Trials group and the SCOTROC1 investigators. SCOTROC1 (SRO) was funded by Cancer Research UK, and the SCOTROC biological studies were supported by Cancer Research UK (grant C536/A6689). RSH receives support from NIH/NIGMS grant K08GM089941, NIH/NCI grant R21 CA139278, NIH/NIGMS grant UO1GM61393, University of Chicago Cancer Center Support Grant (#P30 CA14599) and Breast Cancer SPORE Career Development Award.This is the final version of the article. It first appeared from Impact Journals via http://dx.doi.org/10.18632/oncotarget.704

    Epigenetics Offer New Horizons for Colorectal Cancer Prevention

    Get PDF
    In recent years, colorectal cancer (CRC) incidence has been increasing to become a major cause of morbidity and mortality worldwide from cancers, with high rates in westernized societies and increasing rates in developing countries. Epigenetic modifications including changes in DNA methylation, histone modifications, and non-coding RNAs play a critical role in carcinogenesis. Epidemiological data suggest that, in comparison to other cancers, these alterations are particularly common within the gastrointestinal tract. To explain these observations, environmental factors and especially diet were suggested to both prevent and induce CRC. Epigenetic alterations are, in contrast to genetic modifications, potentially reversible, making the use of dietary agents a promising approach in CRC for the development of chemopreventive strategies targeting epigenetic mechanisms. This review focuses on CRC-related epigenetic alterations as a rationale for various levels of prevention strategies and their potential modulation by natural dietary compounds
    • …
    corecore