1,315 research outputs found

    Waste management technology development and demonstration programs at Brookhaven National Laboratory

    Get PDF
    Two thermoplastic processes for improved treatment of radioactive, hazardous, and mixed wastes were developed from bench scale through technology demonstration: polyethylene encapsulation and modified sulfur cement encapsulation. The steps required to bring technologies from the research and development stage through full scale implementation are described. Both systems result in durable waste forms that meet current Nuclear Regulatory Commission and Environmental Protection Agency regulatory criteria and provide significant improvements over conventional solidification systems such as hydraulic cement. For example, the polyethylene process can encapsulate up to 70 wt pct. nitrate salt, compared with a maximum of about 20 wt pct. for the best hydraulic cement formulation. Modified sulfur cement waste forms containing as much as 43 wt pct. incinerator fly ash were formulated, whereas the maximum quantity of this waste in hydraulic cement is 16 wt pct

    Towards a direct transition energy measurement of the lowest nuclear excitation in 229Th

    Full text link
    The isomeric first excited state of the isotope 229Th exhibits the lowest nuclear excitation energy in the whole landscape of known atomic nuclei. For a long time this energy was reported in the literature as 3.5(5) eV, however, a new experiment corrected this energy to 7.6(5) eV, corresponding to a UV transition wavelength of 163(11) nm. The expected isomeric lifetime is τ=\tau= 3-5 hours, leading to an extremely sharp relative linewidth of Delta E/E ~ 10^-20, 5-6 orders of magnitude smaller than typical atomic relative linewidths. For an adequately chosen electronic state the frequency of the nuclear ground-state transition will be independent from influences of external fields in the framework of the linear Zeeman and quadratic Stark effect, rendering 229mTh a candidate for a reference of an optical clock with very high accuracy. Moreover, in the literature speculations about a potentially enhanced sensitivity of the ground-state transition of 229m^{229m}Th for eventual time-dependent variations of fundamental constants (e.g. fine structure constant alpha) can be found. We report on our experimental activities that aim at a direct identification of the UV fluorescence of the ground-state transition energy of 229mTh. A further goal is to improve the accuracy of the ground-state transition energy as a prerequisite for a laser-based optical control of this nuclear excited state, allowing to build a bridge between atomic and nuclear physics and open new perspectives for metrological as well as fundamental studies

    Критические стыки и сравнительная методология

    Full text link
    The author introduces the concept of critical junctions. The concept is placed in the context of discussions concerning modernity; then, its methodological underpinnings and alternative approaches to comparison are explicated. In the final part, the author demonstrates how to apply critical junctions method while analyzing “annus mirabilis” of 2011.Автор вводит и обосновывает использование понятия «критические стыки». Это понятие рассматривается в свете дискуссий о модерности, затем излагаются его методологические основания и анализируются альтернативные сравнительные методологии. В заключительной части автор дает пример анализа «критических сты­ков» применительно к интерпретации событий «удивительного» 2011 г

    A superspace formulation of Abelian antisymmetric tensor gauge theory

    Get PDF
    We apply a superspace formulation to the four-dimensional gauge theory of a massless Abelian antisymmetric tensor field of rank 2. The theory is formulated in a six-dimensional superspace using rank-2 tensor, vector and scalar superfields and their associated supersources. It is shown that BRS transformation rules of fields are realized as Euler-Lagrange equations without assuming the so-called horizontality condition and that a generating functional Wˉ\bar{W} constracted in the superspace reduces to that for the ordinary gauge theory of Abelian rank-2 antisymmetric tensor field. The WT identity for this theory is derived by making use of the superspace formulation and is expressed in a neat and compact form Wˉ/θ=0\partial\bar{W}/\partial\theta=0.Comment: Latex, 19pages, No fig

    Direct numerical simulation of homogeneous nucleation and growth in a phase-field model using cell dynamics method

    Full text link
    Homogeneous nucleation and growth in a simplest two-dimensional phase field model is numerically studied using the cell dynamics method. Whole process from nucleation to growth is simulated and is shown to follow closely the Kolmogorov-Johnson-Mehl-Avrami (KJMA) scenario of phase transformation. Specifically the time evolution of the volume fraction of new stable phase is found to follow closely the KJMA formula. By fitting the KJMA formula directly to the simulation data, not only the Avrami exponent but the magnitude of nucleation rate and, in particular, of incubation time are quantitatively studied. The modified Avrami plot is also used to verify the derived KJMA parameters. It is found that the Avrami exponent is close to the ideal theoretical value m=3. The temperature dependence of nucleation rate follows the activation-type behavior expected from the classical nucleation theory. On the other hand, the temperature dependence of incubation time does not follow the exponential activation-type behavior. Rather the incubation time is inversely proportional to the temperature predicted from the theory of Shneidman and Weinberg [J. Non-Cryst. Solids {\bf 160}, 89 (1993)]. A need to restrict thermal noise in simulation to deduce correct Avrami exponent is also discussed.Comment: 9 pages, 8 figures, Journal of Chemical Physics to be publishe

    Spinning Test Particle in Kalb-Ramond background

    Full text link
    In this work we explore the geodesic deviations of spinning test particles in a string inspired Einstein-Kalb Ramond background. Such a background is known to be equivalent to a spacetime geometry with torsion. We have shown here that the antisymmetric Kalb-Ramond field has significant effect on the geodesic deviation of a spinning test particle. A search for an observational evidence of such an effect in astrophysical experiments may lead to a better undestanding of the geometry of the background spacetime.Comment: 14 pages, Latex, 5 figure

    String Fields and the Standard Model

    Get PDF
    The Cremmer-Scherk mechanism is generalised in a non-Abelian context. In the presence of the Higgs scalars of the standard model it is argued that fields arising from the low energy effective string action may contribute to the mass generation of the observed vector bosons that mediate the electroweak interactions and that future analyses of experimental data should consider the possibility of string induced radiative corrections to the Weinberg angle coming from physics beyond the standard model.Comment: 4 pages, LATEX, no figure

    Mass generation for non-Abelian antisymmetric tensor fields in a three-dimensional space-time

    Get PDF
    Starting from a recently proposed Abelian topological model in (2+1) dimensions, which involve the Kalb-Ramond two form field, we study a non-Abelian generalization of the model. An obstruction for generalization is detected. However we show that the goal is achieved if we introduce a vectorial auxiliary field. Consequently, a model is proposed, exhibiting a non-Abelian topological mass generation mechanism in D=3, that provides mass for the Kalb-Ramond field. The covariant quantization of this model requires ghosts for ghosts. Therefore in order to quantize the theory we construct a complete set of BRST and anti-BRST equations using the horizontality condition.Comment: 8 pages. To appear in Physical Review

    Extraction of BoNT/A, /B, /E, and /F with a Single, High Affinity Monoclonal Antibody for Detection of Botulinum Neurotoxin by Endopep-MS

    Get PDF
    Botulinum neurotoxins (BoNTs) are extremely potent toxins that are capable of causing respiratory failure leading to long-term intensive care or death. The best treatment for botulism includes serotype-specific antitoxins, which are most effective when administered early in the course of the intoxication. Early confirmation of human exposure to any serotype of BoNT is an important public health goal. In previous work, we focused on developing Endopep-MS, a mass spectrometry-based endopeptidase method for detecting and differentiating the seven serotypes (BoNT/A-G) in buffer and BoNT/A, /B, /E, and /F (the four serotypes that commonly affect humans) in clinical samples. We have previously reported the success of antibody-capture to purify and concentrate BoNTs from complex matrices, such as clinical samples. However, to check for any one of the four serotypes of BoNT/A, /B, /E, or /F, each sample is split into 4 aliquots, and tested for the specific serotypes separately. The discovery of a unique monoclonal antibody that recognizes all four serotypes of BoNT/A, /B, /E and /F allows us to perform simultaneous detection of all of them. When applied in conjunction with the Endopep-MS assay, the detection limit for each serotype of BoNT with this multi-specific monoclonal antibody is similar to that obtained when using other serotype-specific antibodies
    corecore