The isomeric first excited state of the isotope 229Th exhibits the lowest
nuclear excitation energy in the whole landscape of known atomic nuclei. For a
long time this energy was reported in the literature as 3.5(5) eV, however, a
new experiment corrected this energy to 7.6(5) eV, corresponding to a UV
transition wavelength of 163(11) nm. The expected isomeric lifetime is τ=
3-5 hours, leading to an extremely sharp relative linewidth of Delta E/E ~
10^-20, 5-6 orders of magnitude smaller than typical atomic relative
linewidths. For an adequately chosen electronic state the frequency of the
nuclear ground-state transition will be independent from influences of external
fields in the framework of the linear Zeeman and quadratic Stark effect,
rendering 229mTh a candidate for a reference of an optical clock with very high
accuracy. Moreover, in the literature speculations about a potentially enhanced
sensitivity of the ground-state transition of 229mTh for eventual
time-dependent variations of fundamental constants (e.g. fine structure
constant alpha) can be found. We report on our experimental activities that aim
at a direct identification of the UV fluorescence of the ground-state
transition energy of 229mTh. A further goal is to improve the accuracy of the
ground-state transition energy as a prerequisite for a laser-based optical
control of this nuclear excited state, allowing to build a bridge between
atomic and nuclear physics and open new perspectives for metrological as well
as fundamental studies