69 research outputs found

    Gauge and Matter Condensates in Realistic String Models

    Full text link
    We examine the inter-relationship of the superpotential containing hidden and observable matter fields and the ensuing condensates in free fermionic string models. These gauge and matter condensates of the strongly interacting hidden gauge groups play a crucial role in the determination of the physical parameters of the observable sector. Supplementing the above information with the requirement of modular invariance, we find that a generic model with only trilinear superpotential allows for a degenerate (and sometimes pathological) set of vacua. This degeneracy may be lifted by higher order terms in the superpotential. We also point out some other subtle points that may arise in calculations of this nature. We exemplify our observations by computing explicitly the modular invariant gaugino and matter condensates in the flipped SU(5) string model with hidden gauge group SO(10)×SU(4)SO(10)\times SU(4).Comment: 11 pages (7 if reduced

    The dilaton-dominated supersymmetry breaking scenario in the context of the non-minimal supersymmetric model

    Get PDF
    The phenomenological consequences of the dilaton-type soft supersymmetry breaking terms in the context of the next to minimal supersymmetric standard model are investigated. We always find a very low top quark mass. As a consequence such string vacua are excluded by recent experimental results. The viability of the solution of the μ\mu term through the introduction of a gauge singlet field is also briefly discussed.Comment: 10 pages,LATE

    Couplings in Asymmetric Orbifolds and Grand Unified String Models

    Get PDF
    Using the bosonic supercurrent (or covariant lattice) formalism, we review how to compute scattering amplitudes in asymmetric orbifold string models. This method is particularly useful for calculating scattering of multiple asymmetrically twisted string states, where the twisted states are rewritten as ordinary momentum states. We show how to reconstruct some of the 3-family grand unified string models in this formalism, and identify the quantum numbers of the massless states in their spectra. The discrete symmetries of these models are rather intricate. The superpotentials for the 3-family E_6 model and a closely related SO(10) model are discussed in some detail. The forms of the superpotentials of the two 3-family SU(6) models (with asymptotically-free hidden sectors SU(3) and SU(2) \otimes SU(2)) are also presented.Comment: 54 pages, Revtex 3.0 (to appear in Nucl. Phys. B

    Physics Implications of Flat Directions in Free Fermionic Superstring Models II: Renormalization Group Analysis

    Get PDF
    We continue the investigation of the physics implications of a class of flat directions for a prototype quasi-realistic free fermionic string model (CHL5), building upon the results of the previous paper in which the complete mass spectrum and effective trilinear couplings of the observable sector were calculated to all orders in the superpotential. We introduce soft supersymmetry breaking mass parameters into the model, and investigate the gauge symmetry breaking patterns and the renormalization group analysis for two representative flat directions, which leave an additional U(1)U(1)' as well as the SM gauge group unbroken at the string scale. We study symmetry breaking patterns that lead to a phenomenologically acceptable ZZZ-Z' hierarchy, MZO(1 TeV)M_{Z^{'}} \sim {\cal O}(1~{\rm TeV}) and 1012 GeV 10^{12}~{\rm GeV} for electroweak and intermediate scale U(1)U(1)^{'} symmetry breaking, respectively, and the associated mass spectra after electroweak symmetry breaking. The fermion mass spectrum exhibits unrealistic features, including massless exotic fermions, but has an interesting dd-quark hierarchy and associated CKM matrix in one case. There are (some) non-canonical effective μ\mu terms, which lead to a non-minimal Higgs sector with more than two Higgs doublets involved in the symmetry breaking, and a rich structure of Higgs particles, charginos, and neutralinos, some of which, however, are massless or ultralight. In the electroweak scale cases the scale of supersymmetry breaking is set by the ZZ^{'} mass, with the sparticle masses in the several TeV range.Comment: 38 pages, 5 figures, LaTex. Minor correction

    A new scenario for string unification

    Get PDF
    We present a new scenario for gauge coupling unification in flipped SU(5) string models, which identifies the M32M_{32} scale of SU(3) and SU(2) unification with the empirical MLEP101516M_{\rm LEP}\sim10^{15-16}~GeV scale, and the M51M_{51} scale of SU(5) and U(1) unification with the theoretical Mstring5×1017M_{\rm string}\sim5\times10^{17}~GeV string unification scale. The vacuum shift necessary for the cancellation of the anomalous UA(1)\rm U_A(1) and an SU(4) hidden sector with fractionally-charged particles, play a crucial role in the dynamical determination of all intermediate mass scales in this scenario.Comment: 8 pages, LaTeX, 2 figures (uuencoded

    Number of Generations in Free Fermionic String Models,

    Get PDF
    In string theory there seems to be an intimate connection between spacetime and world-sheet physics. Following this line of thought we investigate the family problem in a particular class of string solutions, namely the free fermionic string models. We find that the number of generations NgN_g is related to the index of the supersymmetry generator of the underlying N=2N=2 internal superconformal field theory which is always present in any N=1N=1 spacetime supersymmetric string vacuum. We also derive a formula for the index and thus for the number of generations which is sensitive to the boundary condition assignments of the internal fermions and to certain coefficients which determine the weight with which each spin-structure of the model contributes to the one-loop partition function. Finally we apply our formula to several realistic string models in order to derive NgN_g and we verify our results by constructing explicitly the massless spectrum of these string models.Comment: 17 pages, Plain Tex, no figures

    Searching singlet extensions of the supersymmetric standard model in Z6II Z_{6-II} orbifold compactification of heterotic string

    Full text link
    We search for supersymmetric standard model realizations with extra singlets and extra U(1) U(1) using the heterotic string compactification on the Z6II Z_{6-II} orbifold with two Wilson lines. We analyze the vacuum restabilization mechanism for three representative Pati-Salam string models obtained in the literature and present detailed results for the effective superpotential compatible with the string selection rules. An automated selection of semi-realistic vacua along flat directions in the non-Abelian singlet modes field space is performed by requiring the presence of massless pairs of electroweak Higgs bosons having trilinear superpotential couplings with massless singlet modes and the decoupling of color triplet exotic modes needed to suppress BB and L L number violating processes.Comment: revtex4 format, 21 pages, 7 tables, shortened version added reference

    Singularities In Scalar-Tensor Cosmologies

    Get PDF
    In this article, we examine the possibility that there exist special scalar-tensor theories of gravity with completely nonsingular FRW solutions. Our investigation in fact shows that while most probes living in such a Universe never see the singularity, gravity waves always do. This is because they couple to both the metric and the scalar field, in a way which effectively forces them to move along null geodesics of the Einstein conformal frame. Since the metric of the Einstein conformal frame is always singular for configurations where matter satisfies the energy conditions, the gravity wave world lines are past inextendable beyond the Einstein frame singularity, and hence the geometry is still incomplete, and thus singular. We conclude that the singularity cannot be entirely removed, but only be made invisible to most, but not all, probes in the theory.Comment: 23 pages, latex, no figure

    Cosmological viability of f(R)-gravity as an ideal fluid and its compatibility with a matter dominated phase

    Get PDF
    We show that f(R)-gravity can, in general, give rise to cosmological viable models compatible with a matter-dominated epoch evolving into a late accelerated phase. We discuss the various representations of f(R)-gravity as an ideal fluid or a scalar-tensor gravity theory, taking into account conformal transformations. We point out that mathematical equivalence does not correspond, in several cases, to the physical equivalence of Jordan frame and Einstein frame. Finally, we show that wide classes of f(R)-gravity models, including matter and accelerated phases, can be phenomenologically reconstructed by means of observational data. In principle, any popular quintessence models could be "reframed" as an f(R)-gravity model.Comment: 11 pages, 1 figur
    corecore