437 research outputs found

    Influence of Yield Strength Variability over Cross-Section to Steel Beam Load-Carrying Capacity

    Get PDF
    Authors of article analysed influence of variability of yield strength over cross-section of hot rolled steel member to its load-carrying capacity. In calculation models, the yield strength is usually taken as constant. But yield strength of a steel hot-rolled beam is generally a random quantity. Not only the whole beam but also its parts have slightly different material characteristics. According to the results of more accurate measurements, the statistical characteristics of the material taken from various cross-section points (e.g. from a web and a flange) are, however, more or less different. This variation is described by one dimensional random field. The load-carrying capacity of the beam IPE300 under bending moment at its ends with the lateral buckling influence included is analysed, nondimensional slenderness according to EC3 is λ¯ = 0.6. For this relatively low slender beam the influence of the yield strength on the load-carrying capacity is large. Also the influence of all the other imperfections as accurately as possible, the load-carrying capacity was determined by geometrically and materially nonlinear solution of very accurate FEM model by the ANSYS programme

    Sensitivity Analysis of Fatigue Behaviour of Steel Structure under In-Plane Bending

    Get PDF
    The aim of the present paper is to analyse the influence of some input quantities on the fatigue resistance of a steel structure. The steel element subjected to many times repeated in-plane bending moment was analysed. The fatigue resistance was defined as the number of cycles causing the initial crack size propagation up to the critical size. The variability influence of input random quantities on the fatigue resistance variability was studied by means of the stochastic sensitivity analysis. All input imperfections were considered to be random quantities. The Latin Hypercube Sampling (LHS) numerical simulation method (Monte Carlo type method) was used. It has been found by the stochastic sensitivity analysis that the fatigue resistance variability is most sensitive to the initial crack variability. The paper presented draws attention to the necessity of identifying the statistical characteristics of the initial crack size as exactly as possible because their random variability can largely influence the failure probability of a structure. Large diversity in applying the statistical characteristics of initial crack size by numerous specialists is illustrated by the list of international publications at the end of the present paper

    Fuzzy Sets Theory in Comparison with Stochastic Methods to Analyse Nonlinear Behaviour of a Steel Member under Compression

    Get PDF
    The load-carrying capacity of the member with imperfections under axial compression is analysed in the present paper. The study is divided into two parts: (i) in the first one, the input parameters are considered to be random numbers (with distribution of probability functions obtained from experimental results and/or tolerance standard), while (ii) in the other one, the input parameters are considered to be fuzzy numbers (with membership functions). The load-carrying capacity was calculated by geometrical nonlinear solution of a beam by means of the finite element method. In the case (ii), the membership function was determined by applying the fuzzy sets, whereas in the case (i), the distribution probability function of load-carrying capacity was determined. For (i) stochastic solution, the numerical simulation Monte Carlo method was applied, whereas for (ii) fuzzy solution, the method of the so-called α cuts was applied. The design load-carrying capacity was determined according to the EC3 and EN1990 standards. The results of the fuzzy, stochastic and deterministic analyses are compared in the concluding part of the paper

    Estimating probability of fatigue failure of steel structures

    Get PDF
    The article deals with the analysis of failure probability of the effect of random factors in uencing fatigue crack propagation in a steel element under bending moment. The theoretical model of fatigue crack progression is based on linear fracture mechanics. When determining the required degree of failure probability, it is possible to specify the time of the first inspection of the construction, which will focus on the fatigue damage. Using a conditional probability, subsequent inspection times are specified. The failure probability is examined using a fairly new sensitivity analysis subordinated to a contrast. The importance ranking of the input random variables to the failure probability is investigated. Fatigue properties of steel are taken from recent experimental research. Numerical results are obtained using the Monte Carlo simulation

    Granular Matter: a wonderful world of clusters in far-from-equilibrium systems

    Get PDF
    In this paper, we recall various features of non equilibrium granular systems. Clusters with specific properties are found depending on the packing density, going from loose (a granular gas) to sintered (though brittle) polycrystalline materials. The phase space available can be quite different. Unexpected features, with respect to standard or expected ones in classical fluids or solids, are observed, - like slow relaxation processes or anomalous electrical and thermoelectrical transport property dependences. The cases of various pile structures and the interplay between classical phase transitions and self-organized criticality for avalanches are also outlined.Comment: 7 figures, 37 refs., to be published in Physica

    Semi-automated Magnetic Bead-Based Antibody Selection from Phage Display Libraries

    Get PDF
    Phage display of combinatorial antibody libraries is a very efficient method for selecting recombinant antibodies against a wide range of molecules. It has been applied very successfully for the generation of therapeutic antibodies for more than a decade. To increase robustness and reproducibility of the selection procedure, we developed a semi-automated selection method for the generation of recombinant antibodies from phage display libraries. In this procedure, the selection targets are specifically immobilised to magnetic particles which can then by automatically handled by a magnetic particle processor. At present up to 96 samples can be handled simultaneously. Applying the processor allows standardisation of panning parameters such as washing conditions, incubation times, or to perform parallel selections on same targets under different buffer conditions. Additionally, the whole protocol has been streamlined to carry out bead loading, phage selection, phage amplification between selection rounds and magnetic particle ELISA for confirmation of binding activity in microtiter plate formats. Until now, this method has been successfully applied to select antibody fragments against different types of target, such as peptides, recombinant or homologous proteins, or chemical compounds

    Stability and ductility of structures

    Get PDF
    „Stability and ductility of structures " The Journal of Civil Engineering and Management, 16(2), p. 155-158 First Published Online: 24 Jun 201

    1-Year COMBO stent outcomes stratified by the PARIS bleeding prediction score: From the MASCOT registry

    Get PDF
    Background: The COMBO stent is a biodegradable-polymer sirolimus-eluting stent with endothelial progenitor cell capture technology for faster endothelialization. Objective: We analyzed COMBO stent outcomes in relation to bleeding risk using the PARIS bleeding score. Methods: MASCOT was an international registry of all-comers undergoing attempted COMBO stent implantation. We stratified patients as low bleeding-risk (LBR) for PARIS score 3 based on baseline age, body mass index, anemia, current smoking, chronic kidney disease and need for triple therapy. Primary endpoint was 1-year target lesion failure (TLF), composite of cardiac death, myocardial infarction (MI) not clearly attributed to a non-target vessel or clinically-driven target lesion revascularization (TLR). Bleeding was adjudicated using the Bleeding Academic Research Consortium (BARC) definition. Dual antiplatelet therapy (DAPT) cessation was independently adjudicated. Results: The study included 56% (n = 1270) LBR and 44% (n = 1009) IHBR patients. Incidence of 1-year TLF was higher in IHBR patients (4.1% vs. 2.6%, p = 0.047) driven by cardiac death (1.7% vs. 0.7%, p = 0.029) with similar rates of MI (1.8% vs. 1.1%, p = 0.17), TLR (1.5% vs. 1.6%, p = 0.89) and definite/ probable stent thrombosis (1.2% vs. 0.6%, p = 0.16). Incidence of 1-year major BARC 3 or 5 bleeding was significantly higher in IHBR patients (2.3% vs. 0.9%, p = 0.0094), as was the incidence of DAPT cessation (29.3% vs. 22.8%, p < 0.01), driven by physician-guided discontinuation. Conclusions: Patients with intermediate-to-high PARIS bleeding risk in the MASCOT registry experienced greater incidence of 1-year TLF, major bleeding and DAPT cessation than LBR patients, without significant differences in stent thrombosis
    corecore