354 research outputs found

    Aspects of nitrogen use efficiency of cauliflower II. Productivity and nitrogen partitioning as influenced by N supply

    Get PDF
    Based on studies concerning dry matter (DM) partitioning, DM production, root growth, nitrogen (N) contents of cauliflower organs and soil nitrate availability (first part of the paper Kage et al. 2003b), an integrated simulation model for the cauliflower/soil system is constructed, parameterized and evaluated. Dry matter production of cauliflower is described and predicted using a simple light use efficiency (LUE) based approach assuming a linear decrease of light use efficiency with increasing differences between actual, NCAProt, and 'optimal', NCAoptProt area based leaf protein concentrations. For 2 experimental years the decline of LUE with decreasing nitrogen concentration was at 0.82 and 0.75 (g DM x m 2/(MJ x g N)). Using the parameters obtained from the first experimental year shoot DM production data of cauliflower from five independent experiments with varied N supply containing intermediate harvests could be predicted with a residual mean square error (RMSE) of 72 g/m2 for intermediate harvest DM values ranging from about 50 to 900 g/m2. Nitrogen uptake and partitioning of cauliflower was simulated using functions describing an organ size dependent decline of N content. Leaf nitrate was considered explicitly as a radiation intensity dependent pool, mobilized first under N deficiency. The curd was assumed to have a sink priority for nitrogen. The model predicted shoot N uptake including data of intermediate harvest with a RMSE of 2.4 g/m2 for intermediate harvest N values ranging from about 3 to 30 g/m2. Nitrogen uptake of cauliflower at final harvest was correlated to final leaf number. A scenario simulation was carried out to quantify seasonal variation in N uptake of cauliflower cultivars under unrestricted N availability. Due to variations in the length of the vernalization phase, simulated shoot N uptake ranged from about 260 kg N/ha for spring planted crops to about 290 kg N/ha for summer planted crops of the cultivar 'Fremont'. The cultivar 'Linday', which shows a more severe delay of vernalization under high temperatures, shows on average a larger shoot N uptake for summer planted crops of about 320 kg N/ha and a much larger variation of shoot N uptake

    Aspects of nitrogen use efficiency of cauliflower I. A simulation modelling based analysis of nitrogen availability under field conditions

    Get PDF
    Data from several field experiments (eight crops grown under a widely varying nitrogen supply on a loess loam soil) were used for a simulation modelling based analysis of nitrogen availability of cauliflower. The model was built out of components describing root growth, nitrate transport to the roots and the vertical nitrate transport within the soil. Root observations obtained over 2 years indicated an increased fraction of dry matter allocated to the fine roots under N deficiency. An adapted version of a root growth model for cauliflower described the rooting data with an R2 = 0.75. Based upon an acceptable description of the soil water budget, vertical nitrate movement during the growth period of cauliflower was accurately described. The magnitude of this movement, however, was limited to soil depths of about 60 cm even after periods of high rainfall, because of a high soil water holding capacity. An analysis of the factors determining nitrate availability indicated that apparent mass flow was only of high importance for conditions of extremely high N supply where high amounts of nitrate nitrogen remain in the soil up to the end of the growing season. Otherwise, the dominating fraction of nitrate has to be transported to the roots by diffusion. Single root model based calculations of maximum nitrate transport to roots overestimated N availability as indicated by estimates of critical soil nitrate N that were too low. The introduction of a restricted uptake activity period of the roots was used to bridge the gap between theoretical calculations and empirical results. Scenario calculations were carried out to obtain functional relationships between N supply and residual soil nitrate levels for different soil conditions and management practices

    Modelling diverse root density dynamics and deep nitrogen uptake — a simple approach

    Get PDF
    We present a 2-D model for simulation of root density and plant nitrogen (N) uptake for crops grown in agricultural systems, based on a modification of the root density equation originally proposed by Gerwitz and Page in J Appl Ecol 11:773–781, (1974). A root system form parameter was introduced to describe the distribution of root length vertically and horizontally in the soil profile. The form parameter can vary from 0 where root density is evenly distributed through the soil profile, to 8 where practically all roots are found near the surface. The root model has other components describing root features, such as specific root length and plant N uptake kinetics. The same approach is used to distribute root length horizontally, allowing simulation of root growth and plant N uptake in row crops. The rooting depth penetration rate and depth distribution of root density were found to be the most important parameters controlling crop N uptake from deeper soil layers. The validity of the root distribution model was tested with field data for white cabbage, red beet, and leek. The model was able to simulate very different root distributions, but it was not able to simulate increasing root density with depth as seen in the experimental results for white cabbage. The model was able to simulate N depletion in different soil layers in two field studies. One included vegetable crops with very different rooting depths and the other compared effects of spring wheat and winter wheat. In both experiments variation in spring soil N availability and depth distribution was varied by the use of cover crops. This shows the model sensitivity to the form parameter value and the ability of the model to reproduce N depletion in soil layers. This work shows that the relatively simple root model developed, driven by degree days and simulated crop growth, can be used to simulate crop soil N uptake and depletion appropriately in low N input crop production systems, with a requirement of few measured parameters

    Residues contributing to drug transport by ABCG2 are localised to multiple drug-binding pockets

    Get PDF
    Multidrug binding and transport by the ATP binding cassette transporter ABCG2 is a factor in the clinical resistance to chemotherapy in leukaemia, and a contributory factor to the pharmacokinetic profiles of many other prescribed drugs. Despite its importance, the structural basis of multidrug transport, i.e. the ability to transport multiple distinct chemicals, has remained elusive. Previous research has shown that at least two residues positioned towards the cytoplasmic end of transmembrane helix 3 (TM3) of the transporter play a role in drug transport. We hypothesised that other residues, either in the longitudinal span of TM3, or a perpendicular slice through the intracellular end of other TM helices would also contribute to drug binding and transport by ABCG2. Single point mutant isoforms of ABCG2 were made at approximately 30 positions and were analysed for effects on protein expression, localisation (western blotting, confocal microscopy) and function (flow cytometry) in a mammalian stable cell line expression system. Our data were interpreted in terms of recent structural data on the ABCG protein subfamily and enabled us to propose a surface binding site for the drug mitoxantrone as well as a second, buried site for the same drug. Further mutational analysis of residues that spatially separate these two sites prompt us to suggest a molecular and structural pathway for mitoxantrone binding by ABCG2

    Coordination by Cdc42 of actin, contractility, and adhesion for melanoblast movement in mouse skin

    Get PDF
    YesThe individual molecular pathways downstream of Cdc42, Rac, and Rho GTPases are well documented, but we know surprisingly little about how these pathways are coordinated when cells move in a complex environment in vivo. In the developing embryo, melanoblasts originating from the neural crest must traverse the dermis to reach the epidermis of the skin and hair follicles. We previously established that Rac1 signals via Scar/WAVE and Arp2/3 to effect pseudopod extension and migration of melanoblasts in skin. Here we show that RhoA is redundant in the melanocyte lineage but that Cdc42 coordinates multiple motility systems independent of Rac1. Similar to Rac1 knockouts, Cdc42 null mice displayed a severe loss of pigmentation, and melanoblasts showed cell-cycle progression, migration, and cytokinesis defects. However, unlike Rac1 knockouts, Cdc42 null melanoblasts were elongated and displayed large, bulky pseudopods with dynamic actin bursts. Despite assuming an elongated shape usually associated with fast mesenchymal motility, Cdc42 knockout melanoblasts migrated slowly and inefficiently in the epidermis, with nearly static pseudopods. Although much of the basic actin machinery was intact, Cdc42 null cells lacked the ability to polarize their Golgi and coordinate motility systems for efficient movement. Loss of Cdc42 de-coupled three main systems: actin assembly via the formin FMNL2 and Arp2/3, active myosin-II localization, and integrin-based adhesion dynamics.Cancer Research UK (to L.M.M. [A17196], R.H.I. [A19257], and S.W.G.T.) and NIH grants P01-GM103723 and P41-EB002025 (to K.M.H.). N.R.P. is supported by a Pancreatic Cancer Research Fund grant (to L.M.M.). Funding to Prof. Rottner by the Deutsche Forschungsgemeinschaft (grant RO2414/3-2)

    Reversible Pulmonary Hypertension and Isolated Right-sided Heart Failure Associated with Hyperthyroidism

    Get PDF
    Hyperthyroidism may present with signs and symptoms related to dysfunction of a variety of organs. Cardiovascular pathology in hyperthyroidism is common. A few case reports describe isolated right heart failure, tricuspid regurgitation, and pulmonary hypertension as the prominent cardiovascular manifestations of hyperthyroidism. Although most textbooks do not mention hyperthyroidism as a cause of pulmonary hypertension and isolated right heart failure, the literature suggests that some hyperthyroid patients may develop reversible pulmonary hypertension and isolated right heart failure. We report a case of hyperthyroidism presenting with signs and symptoms of isolated right heart failure, tricuspid regurgitation, and pulmonary hypertension, which resolved with treatment of hyperthyroidism
    • …
    corecore