10 research outputs found

    A Novel Hantavirus of the European Mole, Bruges Virus, Is Involved in Frequent Nova Virus Coinfections

    Get PDF
    Hantaviruses are zoonotic viruses with a complex evolutionary history of virus–host coevolution and cross-species transmission. Although hantaviruses have a broad reservoir host range, virus–host relationships were previously thought to be strict, with a single virus species infecting a single host species. Here, we describe Bruges virus, a novel hantavirus harbored by the European mole (Talpa europaea), which is the well-known host of Nova virus. Phylogenetic analyses of all three genomic segments showed tree topology inconsistencies, suggesting that Bruges virus has emerged from cross-species transmission and ancient reassortment events. A high number of coinfections with Bruges and Nova viruses was detected, but no evidence was found for reassortment between these two hantaviruses. These findings highlight the complexity of hantavirus evolution and the importance of further investigation of hantavirus–reservoir relationships

    Persistence and clearance of Ebola virus RNA from seminal fluid of Ebola virus disease survivors: a longitudinal analysis and modelling study

    Get PDF
    Background By January, 2016, all known transmission chains of the Ebola virus disease (EVD) outbreak in west Africa had been stopped. However, there is concern about persistence of Ebola virus in the reproductive tract of men who have survived EVD. We aimed to use biostatistical modelling to describe the dynamics of Ebola virus RNA load in seminal fl uid, including clearance parameters. Methods In this longitudinal study, we recruited men who had been discharged from three Ebola treatment units in Guinea between January and July, 2015. Participants provided samples of seminal fl uid at follow-up every 3–6 weeks, which we tested for Ebola virus RNA using quantitative real-time RT-PCR. Representative specimens from eight participants were then inoculated into immunodefi cient mice to test for infectivity. We used a linear mixed-eff ect model to analyse the dynamics of virus persistence in seminal fl uid over time. Findings We enrolled 26 participants and tested 130 seminal fl uid specimens; median follow up was 197 days (IQR 187–209 days) after enrolment, which corresponded to 255 days (228–287) after disease onset. Ebola virus RNA was detected in 86 semen specimens from 19 (73%) participants. Median duration of Ebola virus RNA detection was 158 days after onset (73–181; maximum 407 days at end of follow-up). Mathematical modelling of the quantitative time-series data showed a mean clearance rate of Ebola virus RNA from seminal fl uid of –0·58 log units per month, although the clearance kinetic varied greatly between participants. Using our biostatistical model, we predict that 50% and 90% of male survivors clear Ebola virus RNA from seminal fl uid at 115 days (90% prediction interval 72–160) and 294 days (212–399) after disease onset, respectively. We also predicted that the number of men positive for Ebola virus RNA in aff ected countries would decrease from about 50 in January 2016, to fewer than 1 person by July, 2016. Infectious virus was detected in 15 of 26 (58%) specimens tested in mice. Interpretation Time to clearance of Ebola virus RNA from seminal fl uid varies greatly between individuals and could be more than 13 months. Our predictions will assist in decision-making about surveillance and preventive measures in EVD outbreaks

    Persistence and clearance of Ebola virus RNA from seminal fluid of Ebola virus disease survivors: a longitudinal analysis and modelling study.

    Get PDF
    BACKGROUND: By January, 2016, all known transmission chains of the Ebola virus disease (EVD) outbreak in west Africa had been stopped. However, there is concern about persistence of Ebola virus in the reproductive tract of men who have survived EVD. We aimed to use biostatistical modelling to describe the dynamics of Ebola virus RNA load in seminal fluid, including clearance parameters. METHODS: In this longitudinal study, we recruited men who had been discharged from three Ebola treatment units in Guinea between January and July, 2015. Participants provided samples of seminal fluid at follow-up every 3-6 weeks, which we tested for Ebola virus RNA using quantitative real-time RT-PCR. Representative specimens from eight participants were then inoculated into immunodeficient mice to test for infectivity. We used a linear mixed-effect model to analyse the dynamics of virus persistence in seminal fluid over time. FINDINGS: We enrolled 26 participants and tested 130 seminal fluid specimens; median follow up was 197 days (IQR 187-209 days) after enrolment, which corresponded to 255 days (228-287) after disease onset. Ebola virus RNA was detected in 86 semen specimens from 19 (73%) participants. Median duration of Ebola virus RNA detection was 158 days after onset (73-181; maximum 407 days at end of follow-up). Mathematical modelling of the quantitative time-series data showed a mean clearance rate of Ebola virus RNA from seminal fluid of -0·58 log units per month, although the clearance kinetic varied greatly between participants. Using our biostatistical model, we predict that 50% and 90% of male survivors clear Ebola virus RNA from seminal fluid at 115 days (90% prediction interval 72-160) and 294 days (212-399) after disease onset, respectively. We also predicted that the number of men positive for Ebola virus RNA in affected countries would decrease from about 50 in January 2016, to fewer than 1 person by July, 2016. Infectious virus was detected in 15 of 26 (58%) specimens tested in mice. INTERPRETATION: Time to clearance of Ebola virus RNA from seminal fluid varies greatly between individuals and could be more than 13 months. Our predictions will assist in decision-making about surveillance and preventive measures in EVD outbreaks. FUNDING: This study was funded by European Union's Horizon 2020 research and innovation programme, Directorate-General for International Cooperation and Development of the European Commission, Institut national de la santé et de la recherche médicale (INSERM), German Research Foundation (DFG), and Innovative Medicines Initiative 2 Joint Undertaking

    A novel hantavirus of the European mole, Bruges virus, is involved in frequent Nova virus co-infections

    No full text
    Hantaviruses are zoonotic viruses with a complex evolutionary history of virus-host coevolution and cross-species transmission. While hantaviruses have a broad reservoir host range, virus-host relationships were previously thought to be strict, with a single virus species infecting a single host species. Here, we describe Bruges virus, a novel hantavirus harbored by the European mole (Talpa europaea), which is the well-known host of Nova virus. Phylogenetic analyses of all three genomic segments showed tree topology inconsistencies, suggesting that Bruges virus has emerged from cross-species transmission and ancient reassortment events. A high number of co-infections with Bruges and Nova viruses was detected, but no evidence was found for reassortment between these two hantaviruses. These findings highlight the complexity of hantavirus evolution and the importance of further investigation of hantavirus-reservoir relationships.status: publishe

    Predicting the evolution of the Lassa virus endemic area and population at risk over the next decades

    No full text
    Lassa fever is a severe viral hemorrhagic fever caused by a zoonotic virus that repeatedly spills over to humans from its rodent reservoirs. It is currently not known how climate and land use changes could affect the endemic area of this virus, currently limited to parts of West Africa. By exploring the environmental data associated with virus occurrence using ecological niche modelling, we show how temperature, precipitation and the presence of pastures determine ecological suitability for virus circulation. Based on projections of climate, land use, and population changes, we find that regions in Central and East Africa will likely become suitable for Lassa virus over the next decades and estimate that the total population living in ecological conditions that are suitable for Lassa virus circulation may drastically increase by 2070. By analysing geotagged viral genomes using spatially-explicit phylogeography and simulating virus dispersal, we find that in the event of Lassa virus being introduced into a new suitable region, its spread might remain spatially limited over the first decades.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Phylogeography of Lassa Virus in Nigeria

    No full text
    ABSTRACT Lassa virus is genetically diverse with several lineages circulating in West Africa. This study aimed at describing the sequence variability of Lassa virus across Nigeria and inferring its spatiotemporal evolution. We sequenced and isolated 77 Lassa virus strains from 16 Nigerian states. The final data set, including previous works, comprised metadata and sequences of 219 unique strains sampled between 1969 and 2018 in 22 states. Most of this data originated from Lassa fever patients diagnosed at Irrua Specialist Teaching Hospital, Edo State, Nigeria. The majority of sequences clustered with the main Nigerian lineages II and III, while a few sequences formed a new cluster related to Lassa virus strains from Hylomyscus pamfi .Within lineages II and III, seven and five sublineages, respectively, were distinguishable. Phylogeographic analysis suggests an origin of lineage II in the southeastern part of the country around Ebonyi State and a main vector of dispersal toward the west across the Niger River, through Anambra, Kogi, Delta, and Edo into Ondo State. The frontline of virus dispersal appears to be in Ondo. Minor vectors are directed northeast toward Taraba and Adamawa and south toward Imo and Rivers. Lineage III might have spread from northern Plateau State into Kaduna, Nasarawa, Federal Capital Territory, and Bauchi. One sublineage moved south and crossed the Benue River into Benue State. This study provides a geographic mapping of lineages and phylogenetic clusters in Nigeria at a higher resolution. In addition, we estimated the direction and time frame of virus dispersal in the country. IMPORTANCE Lassa virus is the causative agent of Lassa fever, a viral hemorrhagic fever with a case fatality rate of approximately 30% in Africa. Previous studies disclosed a geographical pattern in the distribution of Lassa virus strains and a westward movement of the virus across West Africa during evolution. Our study provides a deeper understanding of the geography of genetic lineages and sublineages of the virus in Nigeria. In addition, we modeled how the virus spread in the country. This knowledge allows us to predict into which geographical areas the virus might spread in the future and prioritize areas for Lassa fever surveillance. Our study not only aimed to generate Lassa virus sequences from across Nigeria but also to isolate and conserve the respective viruses for future research. Both isolates and sequences are important for the development and evaluation of medical countermeasures to treat and prevent Lassa fever, such as diagnostics, therapeutics, and vaccines.info:eu-repo/semantics/publishe

    Persistence and clearance of Ebola virus RNA from seminal fluid of Ebola virus disease survivors: a longitudinal analysis and modelling study

    No full text
    Summary: Background: By January, 2016, all known transmission chains of the Ebola virus disease (EVD) outbreak in west Africa had been stopped. However, there is concern about persistence of Ebola virus in the reproductive tract of men who have survived EVD. We aimed to use biostatistical modelling to describe the dynamics of Ebola virus RNA load in seminal fluid, including clearance parameters. Methods: In this longitudinal study, we recruited men who had been discharged from three Ebola treatment units in Guinea between January and July, 2015. Participants provided samples of seminal fluid at follow-up every 3–6 weeks, which we tested for Ebola virus RNA using quantitative real-time RT-PCR. Representative specimens from eight participants were then inoculated into immunodeficient mice to test for infectivity. We used a linear mixed-effect model to analyse the dynamics of virus persistence in seminal fluid over time. Findings: We enrolled 26 participants and tested 130 seminal fluid specimens; median follow up was 197 days (IQR 187–209 days) after enrolment, which corresponded to 255 days (228–287) after disease onset. Ebola virus RNA was detected in 86 semen specimens from 19 (73%) participants. Median duration of Ebola virus RNA detection was 158 days after onset (73–181; maximum 407 days at end of follow-up). Mathematical modelling of the quantitative time-series data showed a mean clearance rate of Ebola virus RNA from seminal fluid of −0·58 log units per month, although the clearance kinetic varied greatly between participants. Using our biostatistical model, we predict that 50% and 90% of male survivors clear Ebola virus RNA from seminal fluid at 115 days (90% prediction interval 72–160) and 294 days (212–399) after disease onset, respectively. We also predicted that the number of men positive for Ebola virus RNA in affected countries would decrease from about 50 in January 2016, to fewer than 1 person by July, 2016. Infectious virus was detected in 15 of 26 (58%) specimens tested in mice. Interpretation: Time to clearance of Ebola virus RNA from seminal fluid varies greatly between individuals and could be more than 13 months. Our predictions will assist in decision-making about surveillance and preventive measures in EVD outbreaks. Funding: This study was funded by European Union's Horizon 2020 research and innovation programme, Directorate-General for International Cooperation and Development of the European Commission, Institut national de la santé et de la recherche médicale (INSERM), German Research Foundation (DFG), and Innovative Medicines Initiative 2 Joint Undertaking

    Visual mismatch negativity to vanishing parts of objects in younger and older adults.

    No full text
    We investigated visual mismatch negativity (vMMN) to vanishing parts of continuously present objects by comparing the event-related potentials (ERPs) to infrequently (deviant) and frequently (standard) disappearing parts of the objects. This paradigm both excludes low-level stimulus-specific adaptation differences between the responses to deviants and standards, and increases the ecological validity of the stimuli. In comparison to frequently disappearing parts of the stimulus objects, infrequently vanishing parts elicited posterior negative event-related brain activity (vMMN). However, no vMMN emerged to the reappearance of the same parts of the objects. We compared the ERPs of an older and a younger sample of participants. In the 120-180 ms time period vMMN was similar in the two age groups, but in the 180-220 ms time period vMMN emerged only in the younger participants. We consider this difference as an index of more elaborate automatic processing of infrequent stimulus changes in younger adults

    Real-time, portable genome sequencing for Ebola surveillance

    No full text
    corecore