1,740 research outputs found

    Mitralklappenendokarditis nach türkischem Opferfest

    Get PDF
    Zusammenfassung: Erysipelothrix rhusiopathiae ist der Erreger des Schweinerotlaufs. Systemische Infektionen durch E.rhusiopathiae sind eine Rarität, jedoch häufig (zu 90%) mit Endokarditiden verbunden. Ungefähr 60% der Endokarditiden entwickeln sich auf nicht vorgeschädigten Klappen, und trotz adäquater antibiotischer Therapie benötigen etwa ein Drittel der Patienten einen Klappenersatz. Wir beschreiben den Fall einer Hausfrau, die nach Zubereitung von Fleisch für das türkische Opferfest eine Mitralklappenendokarditis durch E.rhusiopathiae entwickelt

    Chronic viral infection promotes sustained Th1-derived immunoregulatory IL-10 via BLIMP-1

    Get PDF
    During the course of many chronic viral infections, the antiviral T cell response becomes attenuated through a process that is regulated in part by the host. While elevated expression of the immunosuppressive cytokine IL-10 is involved in the suppression of viral-specific T cell responses, the relevant cellular sources of IL-10, as well as the pathways responsible for IL-10 induction, remain unclear. In this study, we traced IL-10 production over the course of chronic lymphocytic choriomeningitis virus (LCMV) infection in an IL-10 reporter mouse line. Using this model, we demonstrated that virus-specific T cells with reduced inflammatory function, particularly Th1 cells, display elevated and sustained IL-10 expression during chronic LCMV infection. Furthermore, ablation of IL-10 from the T cell compartment partially restored T cell function and reduced viral loads in LCMV-infected animals. We found that viral persistence is needed for sustained IL-10 production by Th1 cells and that the transcription factor BLIMP-1 is required for IL-10 expression by Th1 cells. Restimulation of Th1 cells from LCMV-infected mice promoted BLIMP-1 and subsequent IL-10 expression, suggesting that constant antigen exposure likely induces the BLIMP-1/IL-10 pathway during chronic viral infection. Together, these data indicate that effector T cells self-limit their responsiveness during persistent viral infection via an IL-10-dependent negative feedback loop.This work was supported by an Australian NHMRC Overseas Biomedical Postdoctoral Fellowship (to I.A. Parish); a Yale School of Medicine Brown-Coxe Postdoctoral Fellowship (to I.A. Parish); the Alexander von Humboldt Foundation (SKA2010, to P.A. Lang); a CIHR grant (to P.S. Ohashi); and by the Howard Hughes Medical Institute and NIH grant RO1AI074699 (to S.M. Kaech). P.S. Ohashi holds a Canada Research Chair in Autoimmunity and Tumor immunity

    A Bio-Polymer Transistor: Electrical Amplification by Microtubules

    Get PDF
    Microtubules (MTs) are important cytoskeletal structures, engaged in a number of specific cellular activities, including vesicular traffic, cell cyto-architecture and motility, cell division, and information processing within neuronal processes. MTs have also been implicated in higher neuronal functions, including memory, and the emergence of "consciousness". How MTs handle and process electrical information, however, is heretofore unknown. Here we show new electrodynamic properties of MTs. Isolated, taxol-stabilized microtubules behave as bio-molecular transistors capable of amplifying electrical information. Electrical amplification by MTs can lead to the enhancement of dynamic information, and processivity in neurons can be conceptualized as an "ionic-based" transistor, which may impact among other known functions, neuronal computational capabilities.Comment: This is the final submitted version. The published version should be downloaded from Biophysical Journa

    Short-term antigen presentation and single clonal burst limit the magnitude of the CD8(+) T cell responses to malaria liver stages.

    No full text
    Malaria sporozoites induce swift activation of antigen-specific CD8(+) T cells that inhibit the intracellular development of liver-stage parasites. The length of time of functional in vivo antigen presentation, estimated by monitoring the activation of antigen-specific CD8(+) T cells, is of short duration, with maximum T cell activation occurring within the first 8 h after immunization and lasting approximately 48 h. Although the magnitude of the CD8(+) T cell response closely correlates with the number of parasites used for immunization, increasing the time of antigen presentation by daily immunizations does not enhance the magnitude of this response. Thus, once a primary clonal burst is established, the CD8(+) T cell response becomes refractory or unresponsive to further antigenic stimulation. These findings strongly suggest that the most efficient strategy for the induction of primary CD8(+) T cell responses is the delivery of a maximal amount of antigen in a single dose, thereby ensuring a clonal burst that involves the largest number of precursors to become memory cells

    Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism

    Get PDF
    SummaryIn cytotoxic T cells (CTL), Akt, also known as protein kinase B, is activated by the T cell antigen receptor (TCR) and the cytokine interleukin 2 (IL-2). Akt can control cell metabolism in many cell types but whether this role is important for CTL function has not been determined. Here we have shown that Akt does not mediate IL-2- or TCR-induced cell metabolic responses; rather, this role is assumed by other Akt-related kinases. There is, however, a nonredundant role for sustained and strong activation of Akt in CTL to coordinate the TCR- and IL-2-induced transcriptional programs that control expression of key cytolytic effector molecules, adhesion molecules, and cytokine and chemokine receptors that distinguish effector versus memory and naive T cells. Akt is thus dispensable for metabolism, but the strength and duration of Akt activity dictates the CTL transcriptional program and determines CTL fate

    NS1 Specific CD8(+) T-Cells with Effector Function and TRBV11 Dominance in a Patient with Parvovirus B19 Associated Inflammatory Cardiomyopathy

    Get PDF
    Background: Parvovirus B19 (B19V) is the most commonly detected virus in endomyocardial biopsies (EMBs) from patients with inflammatory cardiomyopathy (DCMi). Despite the importance of T-cells in antiviral defense, little is known about the role of B19V specific T-cells in this entity. Methodology and Principal Findings: An exceptionally high B19V viral load in EMBs (115,091 viral copies/mg nucleic acids), peripheral blood mononuclear cells (PBMCs) and serum was measured in a DCMi patient at initial presentation, suggesting B19V viremia. The B19V viral load in EMBs had decreased substantially 6 and 12 months afterwards, and was not traceable in PBMCs and the serum at these times. Using pools of overlapping peptides spanning the whole B19V proteome, strong CD8(+) T-cell responses were elicited to the 10-amico-acid peptides SALKLAIYKA (19.7% of all CD8(+) cells) and QSALKLAIYK (10%) and additional weaker responses to GLCPHCINVG (0.71%) and LLHTDFEQVM (0.06%). Real-time RT-PCR of IFN gamma secretion-assay-enriched T-cells responding to the peptides, SALKLAIYKA and GLCPHCINVG, revealed a disproportionately high T-cell receptor Vbeta (TRBV) 11 expression in this population. Furthermore, dominant expression of type-1 (IFN gamma, IL2, IL27 and Tbet) and of cytotoxic T-cell markers (Perforin and Granzyme B) was found, whereas gene expression indicating type-2 (IL4, GATA3) and regulatory T-cells (FoxP3) was low. Conclusions: Our results indicate that B19V Ag-specific CD8(+) T-cells with effector function are involved in B19V associated DCMi. In particular, a dominant role of TRBV11 and type-1/CTL effector cells in the T-cell mediated antiviral immune response is suggested. The persistence of B19V in the endomyocardium is a likely antigen source for the maintenance of CD8(+) T-cell responses to the identified epitopes

    Selected MicroRNAs Define Cell Fate Determination of Murine Central Memory CD8 T Cells

    Get PDF
    During an immune response T cells enter memory fate determination, a program that divides them into two main populations: effector memory and central memory T cells. Since in many systems protection appears to be preferentially mediated by T cells of the central memory it is important to understand when and how fate determination takes place. To date, cell intrinsic molecular events that determine their differentiation remains unclear. MicroRNAs are a class of small, evolutionarily conserved RNA molecules that negatively regulate gene expression, causing translational repression and/or messenger RNA degradation. Here, using an in vitro system where activated CD8 T cells driven by IL-2 or IL-15 become either effector memory or central memory cells, we assessed the role of microRNAs in memory T cell fate determination. We found that fate determination to central memory T cells is under the balancing effects of a discrete number of microRNAs including miR-150, miR-155 and the let-7 family. Based on miR-150 a new target, KChIP.1 (K + channel interacting protein 1), was uncovered, which is specifically upregulated in developing central memory CD8 T cells. Our studies indicate that cell fate determination such as surface phenotype and self-renewal may be decided at the pre-effector stage on the basis of the balancing effects of a discrete number of microRNAs. These results may have implications for the development of T cell vaccines and T cell-based adoptive therapies
    • …
    corecore