33 research outputs found

    Effects of Storage Structures and Moisture Contents on Seed Quality Attributes of Quality Protein Maize

    Full text link
    The study was aimed to examine the effects of various storage structures and moisture contents on seed quality attributes of quality protein maize seed. The quality protein maize (QPM-1) seed was tested in conventional seed storage containers (Fertilizer sack and earthen pot) and the improved hermetic ones (Metal bin, Super grain bag, and Purdue Improved Crop Storage (PICS) bag) at Seed Science and Technology Division, Khumaltar, Nepal during February, 2015 to January 2016. Ten treatments comprising 5 storage devices in two moisture regimes (11% and 9%) replicated thrice and laid out in Completely Randomized Design (CRD). Data on temperature, relative humidity (RH), germination, electrical conductivity (EC), seed moisture content (MC) were collected bimonthly. The conventional containers were found liable to the external environmental condition whereas the hermetic structures observed with controlled RH level below 40% in all combinations. Electrical conductivity (EC) for seed vigor showed that hermetic containers provide higher seed vigor than the conventional ones. Up to 4 months all treatments were found statistically at par for germination. A significant difference was observed in each treatment after 4 months where PICS bag & Super grain bag showed best germination followed by metal bin while fertilizer bag & earthen-pot showed poorer and poorest germination respectively till one year. Almost all treatments with lower MC showed better results than the treatments with higher MC. A negative correlation (R2=69.7%) was found between EC and Germination. All six figures from 2 to 12 months on MC showed statistically different where hermetic plastic bags were found maintaining MC as initial whereas MC of fertilizer bags and earthen pot was spiked than the basal figure. The finding evidenced that the hermetic containers and low MC are the seed storage approaches for retaining the quality of seed even in an ambient environmental condition for more than a year

    High‐Volume Processed, ITO‐Free Superstrates and Substrates for Roll‐to‐Roll Development of Organic Electronics

    Get PDF
    The fabrication of substrates and superstrates prepared by scalable roll‐to‐roll methods is reviewed. The substrates and superstrates that act as the flexible carrier for the processing of functional organic electronic devices are an essential component, and proposals are made about how the general availability of various forms of these materials is needed to accelerate the development of the field of organic electronics. The initial development of the replacement of indium‐tin‐oxide (ITO) for the flexible carrier materials is described and a description of how roll‐to‐roll processing development led to simplification from an initially complex make‐up to higher performing materials through a more simple process is also presented. This process intensification through process simplification is viewed as a central strategy for upscaling, increasing throughput, performance, and cost reduction

    tgCRISPRi: efficient gene knock-down using truncated gRNAs and catalytically active Cas9

    No full text
    Abstract CRISPR-interference (CRISPRi), a highly effective method for silencing genes in mammalian cells, employs an enzymatically dead form of Cas9 (dCas9) complexed with one or more guide RNAs (gRNAs) with 20 nucleotides (nt) of complementarity to transcription initiation sites of target genes. Such gRNA/dCas9 complexes bind to DNA, impeding transcription of the targeted locus. Here, we present an alternative gene-suppression strategy using active Cas9 complexed with truncated gRNAs (tgRNAs). Cas9/tgRNA complexes bind to specific target sites without triggering DNA cleavage. When targeted near transcriptional start sites, these short 14–15 nts tgRNAs efficiently repress expression of several target genes throughout somatic tissues in Drosophila melanogaster without generating any detectable target site mutations. tgRNAs also can activate target gene expression when complexed with a Cas9-VPR fusion protein or modulate enhancer activity, and can be incorporated into a gene-drive, wherein a traditional gRNA sustains drive while a tgRNA inhibits target gene expression
    corecore