13 research outputs found

    Draft Genome Sequences of Three Porcine Streptococcus suis Isolates Which Differ in Their Susceptibility to Penicillin

    Get PDF
    The draft genome sequences of three Streptococcus suis isolates, IMT40343, IMT40201, and IMT40738, are presented here. These isolates were obtained from bronchoalveolar lavage fluid of healthy and diseased weaners from different German piglet-producing farms and differed in their susceptibility to penicillin

    Adaptation and application of the large LAERTES-EU regional climate model ensemble for modeling hydrological extremes: a pilot study for the Rhine basin

    Get PDF
    Enduring and extensive heavy precipitation events associated with widespread river floods are among the main natural hazards affecting central Europe. Since such events are characterized by long return periods, it is difficult to adequately quantify their frequency and intensity solely based on the available observations of precipitation. Furthermore, long-term observations are rare, not homogeneous in space and time, and thus not suitable to running hydrological models (HMs) with respect to extremes. To overcome this issue, we make use of the recently introduced LAERTES-EU (LArge Ensemble of Regional climaTe modEl Simulations for EUrope) data set, which is an ensemble of regional climate model simulations providing over 12 000 simulated years. LAERTES-EU is adapted for use in an HM to calculate discharges for large river basins by applying quantile mapping with a parameterized gamma distribution to correct the mainly positive bias in model precipitation. The Rhine basin serves as a pilot area for calibration and validation. The results show clear improvements in the representation of both precipitation (e.g., annual cycle and intensity distributions) and simulated discharges by the HM after the bias correction. Furthermore, the large size of LAERTES-EU also improves the statistical representativeness for high return values above 100 years of discharges. We conclude that the bias-corrected LAERTES-EU data set is generally suitable for hydrological applications and posterior risk analyses. The results of this pilot study will soon be applied to several large river basins in central Europe

    Adaptation and application of the large LAERTES-EU RCM ensemble for modeling hydrological extremes: A pilot study for the Rhine basin

    Get PDF
    Enduring and extensive heavy precipitation associated with widespread river floods are among the main natural hazards affecting Central Europe. Since such events are characterized by long return periods, it is difficult to adequately quantify their frequency and intensity solely based on the available observations of precipitation. Furthermore, long-term observations are rare, not homogeneous in space and time, and thus not suitable to run hydrological models (HMs) with respect to extremes. To overcome this issue, we make use of the recently introduced LAERTES-EU (LArge Ensemble of Regional climaTe modEl Simulations for EUrope) data set, which is an ensemble of regional climate model simulations providing over 12.000 simulated years. LAERTES-EU is adapted for the use in an HM to calculate discharges for large river basins by applying a quantile mapping with a fixed density function to correct the mainly positive bias in model precipitation. The Rhine basin serves as a pilot area for calibration and validation. The results show clear improvements in the representation of both precipitation (e.g., annual cycle and intensity distributions) and simulated discharges by the HM after the bias correction. Furthermore, the large size of LAERTES-EU improves the statistical representativeness also for high return values above 100 years of discharges. We conclude that the bias-corrected LAERTES-EU data set is generally suitable for hydrological applications and posterior risk analyses. The results of this pilot study will soon be applied to several large river basins in Central Europe

    A central support system can facilitate implementation and sustainability of a Classroom-based Undergraduate Research Experience (CURE) in Genomics

    Get PDF
    In their 2012 report, the President\u27s Council of Advisors on Science and Technology advocated replacing standard science laboratory courses with discovery-based research courses -a challenging proposition that presents practical and pedagogical difficulties. In this paper, we describe our collective experiences working with the Genomics Education Partnership, a nationwide faculty consortium that aims to provide undergraduates with a research experience in genomics through a scheduled course (a classroom-based undergraduate research experience, or CURE). We examine the common barriers encountered in implementing a CURE, program elements of most value to faculty, ways in which a shared core support system can help, and the incentives for and rewards of establishing a CURE on our diverse campuses. While some of the barriers and rewards are specific to a research project utilizing a genomics approach, other lessons learned should be broadly applicable. We find that a central system that supports a shared investigation can mitigate some shortfalls in campus infrastructure (such as time for new curriculum development, availability of IT services) and provides collegial support for change. Our findings should be useful for designing similar supportive programs to facilitate change in the way we teach science for undergraduates

    A course-based research experience: how benefits change with increased investment in instructional time

    Get PDF
    There is widespread agreement that science, technology, engineering, and mathematics programs should provide undergraduates with research experience. Practical issues and limited resources, however, make this a challenge. We have developed a bioinformatics project that provides a course-based research experience for students at a diverse group of schools and offers the opportunity to tailor this experience to local curriculum and institution-specific student needs. We assessed both attitude and knowledge gains, looking for insights into how students respond given this wide range of curricular and institutional variables. While different approaches all appear to result in learning gains, we find that a significant investment of course time is required to enable students to show gains commensurate to a summer research experience. An alumni survey revealed that time spent on a research project is also a significant factor in the value former students assign to the experience one or more years later. We conclude: 1) implementation of a bioinformatics project within the biology curriculum provides a mechanism for successfully engaging large numbers of students in undergraduate research; 2) benefits to students are achievable at a wide variety of academic institutions; and 3) successful implementation of course-based research experiences requires significant investment of instructional time for students to gain full benefit

    Speech intelligibility assessment in a helium environment. II. The speech intelligibility index

    No full text
    The Speech Intelligibility Index (SII) was measured for Navy divers participating in two saturation deep dives and for a group of nondivers to test different communication systems and their components. These SIIs were validated using the Speech Perception in Noise (SPIN) test and the Griffiths version of the Modified Rhyme Test (GMRT). Our goal was to determine if either of these assessments was sensitive enough to provide an objective measure of speech intelligibility when speech was processed through different helmets and helium speech unscramblers (HSUs). Results indicated that SII values and percent intelligibility decreased incrementally as background noise level increased. SIIs were very reliable across the different groups of subjects indicating that the SII was a strong measurement for predicting speech intelligibility to compare linear system components such as helmets. The SII was not useful in measuring intelligibility through nonlinear devices such as HSUs. The speech intelligibiiity scores on the GMRT and SPIN tests were useful when the system component being compared had a large measurable difference, such as in helmet type. However, when the differences were more subtle, such as differences in HSUs, neither the SPIN nor the GMRT appeared sensitive enough to make such distinctions. These results have theoretical as well as practical value for measuring the quality and intelligibility of helium speech enhancement systems

    A central support system can facilitate implementation and sustainability of a Classroom-based Undergraduate Research Experience (CURE) in Genomics.

    Get PDF
    In their 2012 report, the President's Council of Advisors on Science and Technology advocated "replacing standard science laboratory courses with discovery-based research courses"-a challenging proposition that presents practical and pedagogical difficulties. In this paper, we describe our collective experiences working with the Genomics Education Partnership, a nationwide faculty consortium that aims to provide undergraduates with a research experience in genomics through a scheduled course (a classroom-based undergraduate research experience, or CURE). We examine the common barriers encountered in implementing a CURE, program elements of most value to faculty, ways in which a shared core support system can help, and the incentives for and rewards of establishing a CURE on our diverse campuses. While some of the barriers and rewards are specific to a research project utilizing a genomics approach, other lessons learned should be broadly applicable. We find that a central system that supports a shared investigation can mitigate some shortfalls in campus infrastructure (such as time for new curriculum development, availability of IT services) and provides collegial support for change. Our findings should be useful for designing similar supportive programs to facilitate change in the way we teach science for undergraduates
    corecore