32 research outputs found

    Could biodiversity loss have increased Australia’s bushfire threat

    Get PDF
    Ecosystem engineers directly or indirectly affect the availability of resources through changing the physical state of biotic and/or abiotic materials. Fossorial ecosystem engineers have been hypothesized as affecting fire behaviour through altering litter accumulation and breakdown, however, little evidence of this has been shown to date. Fire is one of the major ecological processes affecting biodiversity globally. Australia has seen the extinction of 29 of 315 terrestrial mammal species in the last 200 years and several of these species were ecosystem engineers whose fossorial actions may increase the rate of leaf litter breakdown. Thus, their extinction may have altered the rate of litter accumulation and therefore fire ignition potential and rate of spread. We tested whether a reduction in leaf litter was associated with sites where mammalian ecosystem engineers had been reintroduced using a pair-wise, cross-fence comparison at sites spanning the Australian continent. At Scotia (New South Wales), Karakamia (Western Australia) and Yookamurra (South Australia) sanctuaries, leaf litter mass ( 24%) and percentage cover of leaf litter ( 3%) were significantly lower where reintroduced ecosystem engineers occurred compared to where they were absent, and fire behaviour modelling illustrated this has substantial impacts on flame height and rate of spread. This result has major implications for fire behaviour and management globally wherever ecosystem engineers are now absent as the reduced leaf litter volumes where they occur will lead to decreased flame height and rate of fire spread. This illustrates the need to restore the full suite of biodiversity globally.http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1469-17952017-12-31hb2016Centre for Wildlife Managemen

    Fluctuating Fuzzy Funnels

    Full text link
    It is well known that a D-string ending on a D3, D5 or D7 brane is described in terms of a non-commutative fuzzy funnel geometry. In this article, we give a numerical study of the fluctuations about this leading geometry. This allows us to investigate issues related to the stability and moduli space of these solutions. We comment on the comparison to the linearized fluctuations in supergravity.Comment: 24 pages, 3 figures; v2 references added and correcte

    The implications of biodiversity loss for the dynamics of wildlife in Australia

    Get PDF
    Our study aimed to identify the broad effects of native fossorial species on leaf litter, and make inferences about their mechanistic influence on fire behavior using simulation models (Hayward et al., 2016). This conceptual link has long been hypothesized, but here we present empirical evidence to support it; our results suggest that native fossorial mammals have fire-suppressive effects because their activity results in higher levels of litter decomposition, and a reduced fuel load across the landscape. The expert commentaries build on this study and raise pertinent points for further consideration.http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1469-17952017-12-31hb2016Centre for Wildlife Managemen

    Edge states in Gravity and Black Hole Physics

    Full text link
    We show in the context of Einstein gravity that the removal of a spatial region leads to the appearance of an infinite set of observables and their associated edge states localized at its boundary. Such a boundary occurs in certain approaches to the physics of black holes like the one based on the membrane paradigm. The edge states can contribute to black hole entropy in these models. A ``complementarity principle" is also shown to emerge whereby certain ``edge" observables are accessible only to certain observers. The physical significance of edge observables and their states is discussed using their similarities to the corresponding quantities in the quantum Hall effect. The coupling of the edge states to the bulk gravitational field is demonstrated in the context of (2+1) dimensional gravity.Comment: Revtex file, 22 pg. ( refs added , minor typos corrected

    Open Dielectric Branes

    Get PDF
    We derive leading terms in the effective actions describing the coupling of bulk supergravity fields to systems of arbitrary numbers of Dp-branes and D(p+4)-branes in type IIA/IIB string theory. We use these actions to investigate the physics of Dp-D(p+4) systems in the presence of weak background fields. In particular, we construct various solutions describing collections of Dp-branes blown up into open D(p+2)-branes ending on D(p+4)-branes. The configurations are stabilized by the presence of background fields and represent an open-brane analogue of the Myers dielectric effect. To deduce the D-brane actions, we use supersymmetry to derive operators corresponding to moments of various conserved currents in the Berkooz-Douglas matrix model of M-theory in the presence of longitudinal M5-branes and then use dualities to relate these operators to the worldvolume operators appearing in the Dp-D(p+4)-brane effective actions.Comment: 55 pages, LaTeX, 6 figures, v2: references adde

    The fuzzy S^2 structure of M2-M5 systems in ABJM membrane theories

    Get PDF
    We analyse the fluctuations of the ground-state/funnel solutions proposed to describe M2-M5 systems in the level-k mass-deformed/pure Chern-Simons-matter ABJM theory of multiple membranes. We show that in the large N limit the fluctuations approach the space of functions on the 2-sphere rather than the naively expected 3-sphere. This is a novel realisation of the fuzzy 2-sphere in the context of Matrix Theories, which uses bifundamental instead of adjoint scalars. Starting from the multiple M2-brane action, a U(1) Yang-Mills theory on R^{2,1} x S^2 is recovered at large N, which is consistent with a single D4-brane interpretation in Type IIA string theory. This is as expected at large k, where the semiclassical analysis is valid. Several aspects of the fluctuation analysis, the ground-state/funnel solutions and the mass-deformed/pure ABJM equations can be understood in terms of a discrete noncommutative realisation of the Hopf fibration. We discuss the implications for the possibility of finding an M2-brane worldvolume derivation of the classical S^3 geometry of the M2-M5 system. Using a rewriting of the equations of the SO(4)-covariant fuzzy 3-sphere construction, we also directly compare this fuzzy 3-sphere against the ABJM ground-state/funnel solutions and show them to be different.Comment: 60 pages, Latex; v2: references added; v3: typos corrected and references adde

    Higher dimensional geometries related to fuzzy odd-dimensional spheres

    Get PDF
    We study SO(m)SO(m) covariant Matrix realizations of ∑i=1mXi2=1 \sum_{i=1}^{m} X_i^2 = 1 for even mm as candidate fuzzy odd spheres following hep-th/0101001. As for the fuzzy four sphere, these Matrix algebras contain more degrees of freedom than the sphere itself and the full set of variables has a geometrical description in terms of a higher dimensional coset. The fuzzy S2k−1S^{2k-1} is related to a higher dimensional coset SO(2k)U(1)×U(k−1) {SO(2k) \over U(1) \times U(k-1)}. These cosets are bundles where base and fibre are hermitian symmetric spaces. The detailed form of the generators and relations for the Matrix algebras related to the fuzzy three-spheres suggests Matrix actions which admit the fuzzy spheres as solutions. These Matrix actions are compared with the BFSS, IKKT and BMN Matrix models as well as some others. The geometry and combinatorics of fuzzy odd spheres lead to some remarks on the transverse five-brane problem of Matrix theories and the exotic scaling of the entropy of 5-branes with the brane number.Comment: 32 pages, v2 : ref and acknowledgment adde

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Allometric scaling of maximum metabolic rate: The influence of temperature

    No full text
    1. Maximum aerobic metabolic rate, measured in terms of rate of oxygen consumption during exercise (V̇O2max), is well known to scale to body mass (M) with an exponent greater than the value of 0.75 predicted by models based on the geometry of systems that supply nutrients. 2. Recently, the observed scaling for V̇O2max (∝M0.872) has been hypothesized to arise because of the temperature dependence of biological processes, and because large species show a greater increase in muscle temperature when exercising than do small species. 3. Based on this hypothesis, we predicted V̇O2max that will be positively related to ambient temperature, because heat loss is restricted at high temperatures and body temperature is likely to be elevated to a greater extent than during exercise in the cold. 4. This prediction was tested using a comparative phylogenetic generalized least-squares (PGLS) approach, and 34 measurements of six species of rodent (20.5-939 g) maximally exercising at temperatures from -16 to 30°C. 5. V̇O2max is unrelated to testing temperature, but is negatively related to acclimation temperature. We conclude that prolonged cold exposure increases exercise-induced V̇O2max by acting as a form of aerobic training in mammals, and that elevated muscle temperatures of large species do not explain the scaling of V̇O2max across taxa. © 2008 The Authors.Articl
    corecore