10 research outputs found

    Simulation and Detection of Photonic Chern Insulators in One-Dimensional Circuit Quantum Electrodynamics Lattice

    Full text link
    We introduce a simple method to realize and detect photonic topological Chern insulators with one-dimensional circiut quantum electrodynamics arrays. By periodically modulating the couplings of the array, we show that this one-dimensional model can be mapped into a two-dimensional Chern insulator model. In addition to allowing the study of photonic Chern insulators, this approach also provides a natural platform to realise experimentally Laughlin's pumping argument. Based on scattering theory of topological insulators and input-output formalism, we show that the photonic edge state can be probed directly and the topological invariant can be detected from the winding number of the reflection coefficient phase.Comment: 5 pages, 3 figure

    Topological insulator and particle pumping in a one-dimensional shaken optical lattice

    No full text
    We propose a simple method to simulate and detect topological insulators with cold atoms trapped in a one-dimensional bichromatic optical lattice subjected to a time-periodic modulation. The tight-binding form of this shaken system is equivalent to the periodically driven Aubry-Andre model. We demonstrate that this model can be mapped into a two-dimensional Chern insulator model, whose energy spectrum hosts a topological phase within an experimentally accessible parameter regime. By tuning the laser phase adiabatically, such one-dimensional system constitutes a natural platform to realize topological particle pumping. We show that the Chern number characterizing the topological features of this system can be measured by detecting the density shift after one cycle of pumping.Published versio
    corecore