599 research outputs found

    Modeling and analysis of piezoelectric transformer using multi-mesh loop matrix circuit under square-wave excitation conditions

    Get PDF
    K. W. Kwok, X. X. Wang and H. Chan, Department of Applied PhysicsAuthor name used in this publication: K. W. E. ChengAuthor name used in this publication: S. L. HoAuthor name used in this publication: K. W. KwokAuthor name used in this publication: H. ChanAuthor name used in this publication: X. D. XueRefereed conference paper2005-2006 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Leakage field modeling of spiral winding transformer for contactless power converters

    Get PDF
    Author name used in this publication: K. W. E. ChengAuthor name used in this publication: Y. LuAuthor name used in this publication: K. W. ChanAuthor name used in this publication: Y. L. KwokAuthor name used in this publication: K. W. KwokAuthor name used in this publication: X. D. XueRefereed conference paper2005-2006 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Fast Distributed Approximation for Max-Cut

    Full text link
    Finding a maximum cut is a fundamental task in many computational settings. Surprisingly, it has been insufficiently studied in the classic distributed settings, where vertices communicate by synchronously sending messages to their neighbors according to the underlying graph, known as the LOCAL\mathcal{LOCAL} or CONGEST\mathcal{CONGEST} models. We amend this by obtaining almost optimal algorithms for Max-Cut on a wide class of graphs in these models. In particular, for any ϵ>0\epsilon > 0, we develop randomized approximation algorithms achieving a ratio of (1ϵ)(1-\epsilon) to the optimum for Max-Cut on bipartite graphs in the CONGEST\mathcal{CONGEST} model, and on general graphs in the LOCAL\mathcal{LOCAL} model. We further present efficient deterministic algorithms, including a 1/31/3-approximation for Max-Dicut in our models, thus improving the best known (randomized) ratio of 1/41/4. Our algorithms make non-trivial use of the greedy approach of Buchbinder et al. (SIAM Journal on Computing, 2015) for maximizing an unconstrained (non-monotone) submodular function, which may be of independent interest

    Probing the bradycardic drug binding receptor of HCN-encoded pacemaker channels

    Get PDF
    If (or Ih), encoded by the hyperpolarization-activated, cyclic nucleotide-gated (HCN1–4) channel gene family, contributes significantly to cardiac pacing. Bradycardic agents such as ZD7288 that target HCN channels have been developed, but the molecular configuration of their receptor is poorly defined. Here, we probed the drug receptor by systematically introducing alanine scanning substitutions into the selectivity filter (C347A, I348A, G349A, Y350A, G351A in the P-loop), outer (P355A, V356A, S357A, M358A in the P-S6 linker), and inner (M377A, F378A, V379A in S6) pore vestibules of HCN1 channels. When heterologously expressed in human embryonic kidney 293 cells for patch-clamp recordings, I348A, G349A, Y350A, G351A, P355A, and V356A did not produce measurable currents. The half-blocking concentration (IC50) of wild type (WT) for ZD7288 was 25.8 ± 9.7 μM. While the IC50 of M358A was identical to WT, those of C347A, S357A, F378A, and V379A markedly increased to 137.6 ± 56.4, 113.3 ± 34.1, 587.1 ± 167.5, and 1726.3 ± 673.4 μM, respectively (p < 0.05). Despite the proximity of the S6 residues studied, M377A was hypersensitive (IC50 = 5.1 ± 0.7 μM; p < 0.05) implicating site specificity. To explore the energetic interactions among the S6 residues, double and triple substitutions (M377A/F378A, M377A/V379A, F378A/V379A, and M377A/F378A/V379A) were generated for thermodynamic cycle analysis. Specific interactions with coupling energies (ΔΔG) >1 kT for M377–F378 and F378–V379 but not M377–V379 were identified. Based on these new data and others, we proposed a refined drug-blocking model that may lead to improved antiarrhythmics and bioartificial pacemaker designs

    Establishment of a canine model of cardiac memory using endocardial pacing via internal jugular vein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Development of experimental animal models has played an important role in understanding the mechanisms of cardiac memory. The purpose of this study was to evaluate a new canine model of cardiac memory using endocardial ventricular pacing via internal jugular vein.</p> <p>Methods</p> <p>Twelve Beagle dogs underwent placement of a permanent ventricular pacemaker mimicking the use of pacemakers in humans and induction of cardiac memory by endocardial ventricular pacing.</p> <p>Results</p> <p>Cardiac memory was achieved in 11 of 12 attempts overall. Procedural mortality due to cardiac tamponade (n = 1) occurred in the first attempt. The T-wave memory persisted for 96 ± 17 minutes and 31 ± 6 days in the short-term and long-term cardiac memory groups, respectively. There were no significant differences in the heart rate, blood pressure and echocardiographic parameters in the animals between before and after ventricular pacing in the short-term and long-term cardiac memory groups. No significant pathologic changes with the light microscopy were found in the present study in all dogs.</p> <p>Conclusion</p> <p>The model does require surgery but is not as invasive as an open-chest model. This canine model can serve as a useful tool for studying mechanisms of cardiac memory.</p

    State-Dependent Accessibility of the P-S6 Linker of Pacemaker (HCN) Channels Supports a Dynamic Pore-to-Gate Coupling Model

    Get PDF
    The hyperpolarization-activated cyclic nucleotide-modulated channel gene family (HCN1-4) encodes the membrane depolarizing current that underlies pacemaking. Although the topology of HCN resembles Kv channels, much less is known about their structure-function correlation. Previously, we identified several pore residues in the S5-P linker and P-loop that are externally accessible and/or influence HCN gating, and proposed an evolutionarily conserved pore-to-gate mechanism. Here we sought dynamic evidence by assessing the functional consequences of Cys-scanning substitutions in the unexplored P-S6 linker (residues 352–359), the HCN1-R background (that is, resistant to sulfhydryl-reactive agents). None of A352C, Q353C, A354C, P355C, V356C, S357C, M358C, or S359C produced functional currents; the loss-of-function of Q353C, A354C, S357C, and M358C could be rescued by the reducing agent dithiothreitol. Q353C, A354C, and S357C, but not M358C and HCN1-R, were sensitive to Cd2+ blockade (IC50 = 3–12 μM vs. >1 mM). External application of the positively charged covalent sulfhydryl modifier MTSET irreversibly reduced I−140mV of Q353C and A354C to 27.9 ± 3.4% and 58.2 ± 13.1% of the control, respectively, and caused significant steady-state activation shifts (∆V1/2 = –21.1 ± 1.6 for Q353C and −10.0 ± 2.9 mV for A354C). Interestingly, MTSET reactivity was also state dependent. MTSET, however, affected neither S357C nor M358C, indicating site specificity. Collectively, we have identified novel P-S6 residues whose extracellular accessibility was sterically and state dependent and have provided the first functional evidence consistent with a dynamic HCN pore-to-gate model

    Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding

    Get PDF
    We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics

    Genome-Wide Gene Expression Analysis Suggests an Important Role of Suppressed Immunity in Pathogenesis of Kashin-Beck Disease

    Get PDF
    OBJECTIVE: To investigate the differences between the gene expression profiles in peripheral blood mononuclear cells (PBMC) from normal controls and patients with Kashin-Beck disease (KBD). METHODS: Twenty KBD patients and 12 normal subjects were selected from a KBD-endemic area and divided into four pairs of KBD vs. control (KBD, n = 5 per pair; control, n = 3 per pair). RNAs were respectively isolated from KBD PBMCs and normal PBMCs. Gene expression profiles were analyzed by oligonucleotide microarray. The gene expression profiles in PBMCs from KBD patients and normal controls were compared and the differentially expressed genes were identified. The obtained microarray data was further confirmed by using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). RESULTS: Approximately 501 genes, corresponding to 2.4% of the total probe transcripts, showed a 2-fold change in differential expression. 19.4% (97 out of 501)of the differentially expressed genes were commonly detected in all the four pairs. Among the 97 differentially expressed genes, 83 genes were up-regulated and 14 genes were down-regulated, compared with those in the normal controls. Some differentially expressed genes were found to be related to functions such as immunity, metabolism, apoptosis, cystoskeleton and cell movement, and extracellular matrix. The validity of our microarray data were supported by the results of qRT-PCR assay. CONCLUSION: Differences in the PBMC gene expression profile between the KBD patients and the normal controls exhibited a similar pattern among all the four pairs of microarrays examined, indicating that the suppressed immunity may play an important role in the pathogenesis of KBD

    Invasion of Wolbachia into Anopheles and Other Insect Germlines in an Ex vivo Organ Culture System

    Get PDF
    The common bacterial endosymbiont Wolbachia manipulates its host's reproduction to promote its own maternal transmission, and can interfere with pathogen development in many insects making it an attractive agent for the control of arthropod-borne disease. However, many important species, including Anopheles mosquitoes, are uninfected. Wolbachia can be artificially transferred between insects in the laboratory but this can be a laborious and sometimes fruitless process. We used a simple ex vivo culturing technique to assess the suitability of Wolbachia-host germline associations. Wolbachia infects the dissected germline tissue of multiple insect species when the host tissue and bacteria are cultured together. Ovary and testis infection occurs in a density-dependent manner. Wolbachia strains are more capable of invading the germline of their native or closely related rather than divergent hosts. The ability of Wolbachia to associate with the germline of novel hosts is crucial for the development of stably-transinfected insect lines. Rapid assessment of the suitability of a strain-host combination prior to transinfection may dictate use of a particular Wolbachia strain. Furthermore, the cultured germline tissues of two major Anopheline vectors of Plasmodium parasites are susceptible to Wolbachia infection. This finding further enhances the prospect of using Wolbachia for the biological control of malaria

    Search for the standard model Higgs boson at LEP

    Get PDF
    corecore