133 research outputs found
Controlling Curie temperature in (Ga,Ms)As through location of the Fermi level within the impurity band
The ferromagnetic semiconductor (Ga,Mn)As has emerged as the most studied
material for prototype applications in semiconductor spintronics. Because
ferromagnetism in (Ga,Mn)As is hole-mediated, the nature of the hole states has
direct and crucial bearing on its Curie temperature TC. It is vigorously
debated, however, whether holes in (Ga,Mn)As reside in the valence band or in
an impurity band. In this paper we combine results of channeling experiments,
which measure the concentrations both of Mn ions and of holes relevant to the
ferromagnetic order, with magnetization, transport, and magneto-optical data to
address this issue. Taken together, these measurements provide strong evidence
that it is the location of the Fermi level within the impurity band that
determines TC through determining the degree of hole localization. This finding
differs drastically from the often accepted view that TC is controlled by
valence band holes, thus opening new avenues for achieving higher values of TC.Comment: 5 figures, supplementary material include
Bench-to-bedside review : targeting antioxidants to mitochondria in sepsis
Peer reviewedPublisher PD
Rapid expression and purification of the hepatitis delta virus antigen using the methylotropic yeast Pichia pastoris
Objective: Patients with dual hepatitis B (HBV) and hepatitis D (HDV) virus infection are at an increased risk of progression to liver cirrhosis and hepatocellular carcinoma than patients with a single viral infection. Treatment of viral hepatitis due to dual HBV/HDV infection represents a challenge. Currently there is no vaccine against HDV. Recombinant production of HDV antigen (HDAg) is the first step towards a potential vaccine candidate and the development of assays for HDV detection. Results: This study demonstrates the expression of one HDAg isoform, S-HDAg, in Pichia pastoris. A recombinant vector carrying a tagged gene encoding S-HDAg under the control of the methanol-inducible promoter AOX1 was designed and integrated into P. pastoris X33. The protein, which was purified using a Ni2+ affinity column and eluted at 100-150 mM imidazole, has potential as a recombinant antigen for further study
Can a quality improvement project impact maternal and child health outcomes at scale in northern Ghana?
Background Quality improvement (QI) interventions are becoming more common in low- and middle-income countries, yet few studies have presented impact evaluations of these approaches. In this paper, we present an impact evaluation of a scale-up phase of βProject Fives Alive!β, a QI intervention in Ghana that aims to improve maternal and child health outcomes. βProject Fives Alive!β employed a QI methodology to recognize barriers to care-seeking and care provision at the facility level and then to identify, test and implement simple and low-cost local solutions that address the barriers. Methods A quasi-experimental design, multivariable interrupted time series analysis, with data coming from 744 health facilities and controlling for potential confounding factors, was used to study the effect of the project. The key independent variables were the change categories (interventions implemented) and implementation phase β Wave 2a (early phase) versus Wave 2b (later phase). The outcomes studied were early antenatal care (ANC), skilled delivery, facility-level under-five mortality and attendance of underweight infants at child welfare clinics. We stratified the analysis by facility type, namely health posts, health centres and hospitals. Results Several of the specific change categories were significantly associated with improved outcomes. For example, three of five change categories (early ANC, four or more ANC visits and skilled delivery/immediate postnatal care (PNC)) for health posts and two of five change categories (health education and triage) for hospitals were associated with increased skilled delivery. These change categories were associated with increases in skilled delivery varying from 28% to 58%. PNC changes for health posts and health centres were associated with greater attendance of underweight infants at child welfare clinics. The triage change category was associated with increased early antenatal care in hospitals. Intensity, the number of change categories tested, was associated with increased skilled delivery in health centres and reduced under-five mortality in hospitals. Conclusions Using an innovative evaluation technique we determined that βProject Fives Alive!β demonstrated impact at scale for the outcomes studied. The QI approach used by this project should be considered by other low- and middle-income countries in their efforts to improve maternal and child health
Dynamic temporary blood facility location-allocation during and post-disaster periods
The key objective of this study is to develop a tool (hybridization or integration of different techniques) for locating the temporary blood banks during and post-disaster conditions that could serve the hospitals with minimum response time. We have used temporary blood centers, which must be located in such a way that it is able to serve the demand of hospitals in nearby region within a shorter duration. We are locating the temporary blood centres for which we are minimizing the maximum distance with hospitals. We have used Tabu search heuristic method to calculate the optimal number of temporary blood centres considering cost components. In addition, we employ Bayesian belief network to prioritize the factors for locating the temporary blood facilities. Workability of our model and methodology is illustrated using a case study including blood centres and hospitals surrounding Jamshedpur city. Our results shows that at-least 6 temporary blood facilities are required to satisfy the demand of blood during and post-disaster periods in Jamshedpur. The results also show that that past disaster conditions, response time and convenience for access are the most important factors for locating the temporary blood facilities during and post-disaster periods
An overview of the recent developments on fructooligosaccharide production and applications
Over the past years, many researchers have suggested
that deficiencies in the diet can lead to disease states
and that some diseases can be avoided through an adequate
intake of relevant dietary components. Recently, a great interest
in dietary modulation of the human gut has been registered.
Prebiotics, such as fructooligosaccharides (FOS), play a key
role in the improvement of gut microbiota balance and in
individual health. FOS are generally used as components of
functional foods, are generally regarded as safe (generally
recognized as safe statusβfrom the Food and Drug Administration,
USA), and worth about 150β¬ per kilogram. Due to
their nutrition- and health-relevant properties, such as moderate
sweetness, low carcinogenicity, low calorimetric value,
and low glycemic index, FOS have been increasingly used
by the food industry. Conventionally, FOS are produced
through a two-stage process that requires an enzyme production
and purification step in order to proceed with the chemical
reaction itself. Several studies have been conducted on the
production of FOS, aiming its optimization toward the development
of more efficient production processes and their potential
as food ingredients. The improvement of FOS yield and
productivity can be achieved by the use of different fermentative
methods and different microbial sources of FOS producing
enzymes and the optimization of nutritional and
culture parameter; therefore, this review focuses on the latest
progresses in FOS research such as its production, functional
properties, and market data.Agencia de Inovacao (AdI)-Project BIOLIFE reference PRIME 03/347. Ana Dominguez acknowledges Fundacao para a Ciencia e a Tecnologia, Portugal, for her PhD grant reference SFRH/BD/23083/2005
Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes
We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (Pβ<β2.2βΓβ10-7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio β€1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.</p
The desmosome and pemphigus
Desmosomes are patch-like intercellular adhering junctions (βmaculae adherentesβ), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca2+-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required
- β¦