3,631 research outputs found
Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides
Motivated by the triumph and limitation of graphene for electronic
applications, atomically thin layers of group VI transition metal
dichalcogenides are attracting extensive interest as a class of graphene-like
semiconductors with a desired band-gap in the visible frequency range. The
monolayers feature a valence band spin splitting with opposite sign in the two
valleys located at corners of 1st Brillouin zone. This spin-valley coupling,
particularly pronounced in tungsten dichalcogenides, can benefit potential
spintronics and valleytronics with the important consequences of spin-valley
interplay and the suppression of spin and valley relaxations. Here we report
the first optical studies of WS2 and WSe2 monolayers and multilayers. The
efficiency of second harmonic generation shows a dramatic even-odd oscillation
with the number of layers, consistent with the presence (absence) of inversion
symmetry in even-layer (odd-layer). Photoluminescence (PL) measurements show
the crossover from an indirect band gap semiconductor at mutilayers to a
direct-gap one at monolayers. The PL spectra and first-principle calculations
consistently reveal a spin-valley coupling of 0.4 eV which suppresses
interlayer hopping and manifests as a thickness independent splitting pattern
at valence band edge near K points. This giant spin-valley coupling, together
with the valley dependent physical properties, may lead to rich possibilities
for manipulating spin and valley degrees of freedom in these atomically thin 2D
materials
Expression of Avian Influenza Virus Receptors and H5N1 Virus Infection In Human Respiratory Tract
Oral Presentations - Virus Structure/Function and Receptor BindingReceptor specificity restricts influenza virus cross species transmission, with SAα2,6 Gal and SAα2,3 Gal sialic acids recognized by human and avian influenza viruses, respectively. This study investigated the distribution of these two species of sialic acids in the human respiratory tract. The SAα2,3 Gal species was infrequently detected in the upper respiratory tract, but prevalent in the lower part, while the SAα2,6 Gal species is more common in the upper respiratory tract. Though alveolus cells are more susceptible than trachea and bronchus epithelial cells to avian influenza H5N1 virus infection in the ex vivo experiment, H5N1 virus was found to infect the upper respiratory tract epithelial cells of a human case. It was also found that H5N1 virus infection occurs in the epithelial cells of the respiratory tract which do not express detectable SA α2,3Gal. These observations may be important to investigate further if the currently-observed limited human to human transmission by H5N1 virus is associated with the differential expression of SAα2,3 Gal in human upper respiratory tract among individuals.postprin
Half-Metallic Graphene Nanoribbons
Electrical current can be completely spin polarized in a class of materials
known as half-metals, as a result of the coexistence of metallic nature for
electrons with one spin orientation and insulating for electrons with the
other. Such asymmetric electronic states for the different spins have been
predicted for some ferromagnetic metals - for example, the Heusler compounds-
and were first observed in a manganese perovskite. In view of the potential for
use of this property in realizing spin-based electronics, substantial efforts
have been made to search for half-metallic materials. However, organic
materials have hardly been investigated in this context even though
carbon-based nanostructures hold significant promise for future electronic
device. Here we predict half-metallicity in nanometre-scale graphene ribbons by
using first-principles calculations. We show that this phenomenon is realizable
if in-plane homogeneous electric fields are applied across the zigzag-shaped
edges of the graphene nanoribbons, and that their magnetic property can be
controlled by the external electric fields. The results are not only of
scientific interests in the interplay between electric fields and electronic
spin degree of freedom in solids but may also open a new path to explore
spintronics at nanometre scale, based on graphene
TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors.
The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas
Correcting pervasive errors in RNA crystallography through enumerative structure prediction
Three-dimensional RNA models fitted into crystallographic density maps
exhibit pervasive conformational ambiguities, geometric errors and steric
clashes. To address these problems, we present enumerative real-space
refinement assisted by electron density under Rosetta (ERRASER), coupled to
Python-based hierarchical environment for integrated 'xtallography' (PHENIX)
diffraction-based refinement. On 24 data sets, ERRASER automatically corrects
the majority of MolProbity-assessed errors, improves the average Rfree factor,
resolves functionally important discrepancies in noncanonical structure and
refines low-resolution models to better match higher-resolution models
Two-dimensional amine and hydroxy functionalized fused aromatic covalent organic framework
Ordered two-dimensional covalent organic frameworks (COFs) have generally been synthesized using reversible reactions. It has been difficult to synthesize a similar degree of ordered COFs using irreversible reactions. Developing COFs with a fused aromatic ring system via an irreversible reaction is highly desirable but has remained a significant challenge. Here we demonstrate a COF that can be synthesized from organic building blocks via irreversible condensation (aromatization). The as-synthesized robust fused aromatic COF (F-COF) exhibits high crystallinity. Its lattice structure is characterized by scanning tunneling microscopy and X-ray diffraction pattern. Because of its fused aromatic ring system, the F-COF structure possesses high physiochemical stability, due to the absence of hydrolysable weak covalent bonds
Microstructural degradation of Ti-45Al-8Nb alloy during the fabrication process by electron beam melting
Search for Second-Generation Scalar Leptoquarks in Collisions at =1.96 TeV
Results on a search for pair production of second generation scalar
leptoquark in collisions at =1.96 TeV are reported. The
data analyzed were collected by the CDF detector during the 2002-2003 Tevatron
Run II and correspond to an integrated luminosity of 198 pb. Leptoquarks
(LQ) are sought through their decay into (charged) leptons and quarks, with
final state signatures represented by two muons and jets and one muon, large
transverse missing energy and jets. We observe no evidence for production
and derive 95% C.L. upper limits on the production cross sections as well
as lower limits on their mass as a function of , where is the
branching fraction for .Comment: 9 pages (3 author list) 5 figure
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Proactive and politically skilled professionals: What is the relationship with affective occupational commitment?
The aim of this study is to extend research on employee affective commitment in three ways: (1) instead of organizational commitment the focus is on occupational commitment; (2) the role of proactive personality on affective occupational commitment is examined; and (3) occupational satisfaction is examined as a mediator and political skills as moderator in the relationship between proactive personality and affective occupational commitment. Two connected studies, one in a hospital located in the private sector and one in a university located in the public sector, are carried out in Pakistan, drawing on a total sample of over 400 employees. The results show that proactive personality is positively related to affective occupational commitment, and that occupational satisfaction partly mediates the relationship between proactive personality and affective occupational commitment. No effect is found for a moderator effect of political skills in the relationship between proactive personality and affective occupational commitment. Political skills however moderate the relationship between proactive personality and affective organizational commitment
- …
