1,187 research outputs found

    Fuzzy identity-based data integrity auditing for reliable cloud storage systems

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.As a core security issue in reliable cloud storage, data integrity has received much attention. Data auditing protocols enable a verifier to efficiently check the integrity of the outsourced data without downloading the data. A key research challenge associated with existing designs of data auditing protocols is the complexity in key management. In this paper, we seek to address the complex key management challenge in cloud data integrity checking by introducing fuzzy identity-based auditing-the first in such an approach, to the best of our knowledge. More specifically, we present the primitive of fuzzy identity-based data auditing, where a user’s identity can be viewed as a set of descriptive attributes. We formalize the system model and the security model for this new primitive. We then present a concrete construction of fuzzy identity-based auditing protocol by utilizing biometrics as the fuzzy identity. The new protocol offers the property of error-tolerance, namely, it binds private key to one identity which can be used to verify the correctness of a response generated with another identity, if and only if both identities are sufficiently close. We prove the security of our protocol based on the computational Diffie-Hellman assumption and the discrete logarithm assumption in the selective-ID security model. Finally, we develop a prototype implementation of the protocol which demonstrates the practicality of the proposal.This work is supported by the National Natural Science Foundation of China (61501333,61300213,61272436,61472083), the Fundamental Research Funds for the Central Universities under Grant ZYGX2015J05

    A Blockchain-based Decentralized, Fair and Authenticated Information Sharing Scheme in Zero Trust Internet-of-Things

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordData availability statement: The [code] data used to support the findings of this study have been deposited in the [IEEE DATAPORT] repository ([10.21227/rtmq-t937]).Internet-of-Things (IoT) are increasingly operating in the zero-trust environments where any devices and systems may be compromised and hence untrusted. In addition, data collected by and sent from IoT devices may be shared with edge computing systems in order to reduce the reliance on centralized (cloud) servers, leading to further security and privacy issues. To cope with these challenges, this paper proposes an innovative blockchain-enabled information sharing solution in zero-trust context to guarantee anonymity yet entity authentication, data privacy yet data trustworthiness, and participant stimulation yet fairness. This new solution is able to support filtering of fabricated information through smart contracts, effective voting, and consensus mechanisms, which can prevent unauthenticated participants from sharing garbage information. We also prove the proposed solution is secure in the universal composability framework, and further evaluate its performance over an ETH-based platform to demonstrate its utility.Foundation of Yunnan Key Laboratory of Blockchain Application TechnologyNational Natural Science Foundation of ChinaProvincial Key Research and Development Program of HubeiFoundation of Henan Key Laboratory of Network Cryptography TechnologyFoundation of Hubei Key Laboratory of Intelligent Geo-Information Processin

    Glyoxal yield from isoprene oxidation and relation to formaldehyde: chemical mechanism, constraints from SENEX aircraft observations, and interpretation of OMI satellite data

    Get PDF
    Glyoxal (CHOCHO) is produced in the atmosphere by the oxidation of volatile organic compounds (VOCs). Like formaldehyde (HCHO), another VOC oxidation product, it is measurable from space by solar backscatter. Isoprene emitted by vegetation is the dominant source of CHOCHO and HCHO in most of the world. We use aircraft observations of CHOCHO and HCHO from the SENEX campaign over the southeast US in summer 2013 to better understand the CHOCHO time-dependent yield from isoprene oxidation, its dependence on nitrogen oxides (NOx  ≡  NO + NO2), the behavior of the CHOCHO–HCHO relationship, the quality of OMI CHOCHO satellite observations, and the implications for using CHOCHO observations from space as constraints on isoprene emissions. We simulate the SENEX and OMI observations with the Goddard Earth Observing System chemical transport model (GEOS-Chem) featuring a new chemical mechanism for CHOCHO formation from isoprene. The mechanism includes prompt CHOCHO formation under low-NOx conditions following the isomerization of the isoprene peroxy radical (ISOPO2). The SENEX observations provide support for this prompt CHOCHO formation pathway, and are generally consistent with the GEOS-Chem mechanism. Boundary layer CHOCHO and HCHO are strongly correlated in the observations and the model, with some departure under low-NOx conditions due to prompt CHOCHO formation. SENEX vertical profiles indicate a free-tropospheric CHOCHO background that is absent from the model. The OMI CHOCHO data provide some support for this free-tropospheric background and show southeast US enhancements consistent with the isoprene source but a factor of 2 too low. Part of this OMI bias is due to excessive surface reflectivities assumed in the retrieval. The OMI CHOCHO and HCHO seasonal data over the southeast US are tightly correlated and provide redundant proxies of isoprene emissions. Higher temporal resolution in future geostationary satellite observations may enable detection of the prompt CHOCHO production under low-NOx conditions apparent in the SENEX data

    The validity of using ICD-9 codes and pharmacy records to identify patients with chronic obstructive pulmonary disease

    Get PDF
    Background: Administrative data is often used to identify patients with chronic obstructive pulmonary disease (COPD), yet the validity of this approach is unclear. We sought to develop a predictive model utilizing administrative data to accurately identify patients with COPD. Methods: Sequential logistic regression models were constructed using 9573 patients with postbronchodilator spirometry at two Veterans Affairs medical centers (2003-2007). COPD was defined as: 1) FEV1/FVC <0.70, and 2) FEV1/FVC < lower limits of normal. Model inputs included age, outpatient or inpatient COPD-related ICD-9 codes, and the number of metered does inhalers (MDI) prescribed over the one year prior to and one year post spirometry. Model performance was assessed using standard criteria. Results: 4564 of 9573 patients (47.7%) had an FEV1/FVC < 0.70. The presence of ≄1 outpatient COPD visit had a sensitivity of 76% and specificity of 67%; the AUC was 0.75 (95% CI 0.74-0.76). Adding the use of albuterol MDI increased the AUC of this model to 0.76 (95% CI 0.75-0.77) while the addition of ipratropium bromide MDI increased the AUC to 0.77 (95% CI 0.76-0.78). The best performing model included: ≄6 albuterol MDI, ≄3 ipratropium MDI, ≄1 outpatient ICD-9 code, ≄1 inpatient ICD-9 code, and age, achieving an AUC of 0.79 (95% CI 0.78-0.80). Conclusion: Commonly used definitions of COPD in observational studies misclassify the majority of patients as having COPD. Using multiple diagnostic codes in combination with pharmacy data improves the ability to accurately identify patients with COPD.Department of Veterans Affairs, Health Services Research and Development (DHA), American Lung Association (CI- 51755-N) awarded to DHA, the American Thoracic Society Fellow Career Development AwardPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/84155/1/Cooke - ICD9 validity in COPD.pd

    Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics

    Get PDF
    Background: Lipids have critical functions in cellular energy storage, structure and signaling. Many individual lipid molecules have been associated with the evolution of prostate cancer; however, none of them has been approved to be used as a biomarker. The aim of this study is to identify lipid molecules from hundreds plasma apparent lipid species as biomarkers for diagnosis of prostate cancer. Methodology/Principal Findings: Using lipidomics, lipid profiling of 390 individual apparent lipid species was performed on 141 plasma samples from 105 patients with prostate cancer and 36 male controls. High throughput data generated from lipidomics were analyzed using bioinformatic and statistical methods. From 390 apparent lipid species, 35 species were demonstrated to have potential in differentiation of prostate cancer. Within the 35 species, 12 were identified as individual plasma lipid biomarkers for diagnosis of prostate cancer with a sensitivity above 80%, specificity above 50% and accuracy above 80%. Using top 15 of 35 potential biomarkers together increased predictive power dramatically in diagnosis of prostate cancer with a sensitivity of 93.6%, specificity of 90.1% and accuracy of 97.3%. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) demonstrated that patient and control populations were visually separated by identified lipid biomarkers. RandomForest and 10-fold cross validation analyses demonstrated that the identified lipid biomarkers were able to predict unknown populations accurately, and this was not influenced by patient's age and race. Three out of 13 lipid classes, phosphatidylethanolamine (PE), ether-linked phosphatidylethanolamine (ePE) and ether-linked phosphatidylcholine (ePC) could be considered as biomarkers in diagnosis of prostate cancer. Conclusions/Significance: Using lipidomics and bioinformatic and statistical methods, we have identified a few out of hundreds plasma apparent lipid molecular species as biomarkers for diagnosis of prostate cancer with a high sensitivity, specificity and accuracy

    Top Quarks as a Window to String Resonances

    Full text link
    We study the discovery potential of string resonances decaying to ttˉt\bar{t} final state at the LHC. We point out that top quark pair production is a promising and an advantageous channel for studying such resonances, due to their low Standard Model background and unique kinematics. We study the invariant mass distribution and angular dependence of the top pair production cross section via exchanges of string resonances. The mass ratios of these resonances and the unusual angular distribution may help identify their fundamental properties and distinguish them from other new physics. We find that string resonances for a string scale below 4 TeV can be detected via the ttˉt\bar{t} channel, either from reconstructing the ttˉt\bar{t} semi-leptonic decay or recent techniques in identifying highly boosted tops.Comment: 22 pages, 6 figure

    Coal Use, Stove Improvement, and Adult Pneumonia Mortality in Xuanwei, China: A Retrospective Cohort Study

    Get PDF
    Background: In Xuanwei County, China, unvented indoor coal burning is strongly associated with increased risk of lung cancer and chronic obstructive pulmonary disease. However, the impact of coal burning and stove improvement on risk of pneumonia is not clear. Methods: We conducted a retrospective cohort study among all farmers born 1917 through 1951 and living in Xuanwei as of 1 January 1976. The analysis included a total of 42,422 cohort members. Follow-up identified all deaths in the cohort from 1976 through 1996. Ages at entry into and at exit from follow-up ranged from 24 to 59 years and from 25 to 80 years, respectively. The record search detected 225 deaths from pneumonia, and 32,332 (76%) were alive as of 31 December 1996. We constructed multivariable Cox models (time variable = age) to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Results: Use of coal, especially smokeless coal, was positively associated with pneumonia mortality. Annual tonnage and lifetime duration of smoky and smokeless coal use were positively associated with pneumonia mortality. Stove improvement was associated with a 50% reduction in pneumonia deaths (smoky coal users: HR, 0.521; 95% CI, 0.340-0.798; smokeless coal users: HR, 0.449; 95% CI, 0.215-0.937). Conclusions: Our analysis is the first to suggest that indoor air pollution from unvented coal burning is an important risk factor for pneumonia death in adults and that improving ventilation by installing a chimney is an effective measure to decrease it.published_or_final_versio

    Overnight switch from ropinirole to transdermal rotigotine patch in patients with Parkinson disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A recent trial involving predominantly Caucasian subjects with Parkinson Disease (PD) showed switching overnight from an oral dopaminergic agonist to the rotigotine patch was well tolerated without loss of efficacy. However, no such data have been generated for Korean patients.</p> <p>Methods</p> <p>This open-label multicenter trial investigated PD patients whose symptoms were not satisfactorily controlled by ropinirole, at a total daily dose of 3 mg to 12 mg, taken as monotherapy or as an adjunct to levodopa. Switching treatment from oral ropinirole to transdermal rotigotine was carried out overnight, with a dosage ratio of 1.5:1. After a 28-day treatment period, the safety and tolerability of switching was evaluated. Due to the exploratory nature of this trial, the effects of rotigotine on motor and nonmotor symptoms of PD were analyzed in a descriptive manner.</p> <p>Results</p> <p>Of the 116 subjects who received at least one treatment, 99 (85%) completed the 28-day trial period. Dose adjustments were required for 11 subjects who completed the treatment period. A total of 76 treatment-emergent adverse events (AEs) occurred in 45 subjects. No subject experienced a serious AE. Thirteen subjects discontinued rotigotine prematurely due to AEs. Efficacy results suggested improvements in both motor and nonmotor symptoms and quality of life after switching. Fifty-two subjects (46%) agreed that they preferred using the patch over oral medications, while 31 (28%) disagreed.</p> <p>Conclusions</p> <p>Switching treatment overnight from oral ropinirole to transdermal rotigotine patch, using a dosage ratio of 1.5:1, was well tolerated in Korean patients with no loss of efficacy.</p> <p>Trial registration</p> <p>This trial is registered with the ClincalTrails.gov Registry (<a href="http://www.clinicaltrials.gov/ct2/show/NCT00593606">NCT00593606</a>).</p

    Frequency of extreme Sahelian storms tripled since 1982 in satellite observations

    Get PDF
    The hydrological cycle is expected to intensify under global warming, with studies reporting more frequent extreme rain events in many regions of the world, and predicting increases in future flood frequency. Such early, predominantly mid-latitude observations are essential because of shortcomings within climate models in their depiction of convective rainfall. A globally important group of intense storms—mesoscale convective systems (MCSs)—poses a particular challenge, because they organize dynamically on spatial scales that cannot be resolved by conventional climate models. Here, we use 35 years of satellite observations from the West African Sahel to reveal a persistent increase in the frequency of the most intense MCSs. Sahelian storms are some of the most powerful on the planet, and rain gauges in this region have recorded a rise in ‘extreme’ daily rainfall totals. We find that intense MCS frequency is only weakly related to the multidecadal recovery of Sahel annual rainfall, but is highly correlated with global land temperatures. Analysis of trends across Africa reveals that MCS intensification is limited to a narrow band south of the Sahara desert. During this period, wet-season Sahelian temperatures have not risen, ruling out the possibility that rainfall has intensified in response to locally warmer conditions. On the other hand, the meridional temperature gradient spanning the Sahel has increased in recent decades, consistent with anthropogenic forcing driving enhanced Saharan warming. We argue that Saharan warming intensifies convection within Sahelian MCSs through increased wind shear and changes to the Saharan air layer. The meridional gradient is projected to strengthen throughout the twenty-first century, suggesting that the Sahel will experience particularly marked increases in extreme rain. The remarkably rapid intensification of Sahelian MCSs since the 1980s sheds new light on the response of organized tropical convection to global warming, and challenges conventional projections made by general circulation models
    • 

    corecore