90 research outputs found
Drought Reduces Release of Plant Matter Into Dissolved Organic Matter Potentially Restraining Ecosystem Recovery
Future climate scenarios indicate increasing drought intensity that threatens ecosystem functioning. However, the behavior of ecosystems during intense drought, such as the 2018 drought in Northern Europe, and their respective response following rewetting is not fully understood. We investigated the effect of drought on four different vegetation types in a temperate climate by analyzing dissolved organic matter (DOM) concentration and composition present in soil leachate, and compared it to two accompanying years. DOM is known to play an important role in ecosystem recovery and holds information on matter flows between plants, soil microorganisms and soil organic matter. Knowledge about DOM opens the possibility to better disentangle the role of plants and microorganisms in ecosystem recovery. We found that the average annual DOM concentration significantly decreased during the 2018 drought year compared to the normal year. This suggests a stimulation of DOM release under normal conditions, which include a summer drought followed by a rewetting period. The rewetting period, which holds high DOM concentrations, was suppressed under more intense drought. Our detailed molecular analysis of DOM using ultrahigh resolution mass spectrometry showed that DOM present at the beginning of the rewetting period resembles plant matter, whereas in later phases the DOM molecular composition was modified by microorganisms. We observed this pattern in all four vegetation types analyzed, although vegetation types differed in DOM concentration and composition. Our results suggest that plant matter drives ecosystem recovery and that increasing drought intensity may lower the potential for ecosystem recovery
Modeling of biospheric CO2 gross fluxes via oxygen isotopes in a spruce forest canopy: a 222Rn calibrated box model approach
One-dimensional box model estimates of biospheric CO2 gross fluxes are presented. The results are based on measurements performed during the EUROSIBERIAN CARBONFLUX intensive campaign between July 27 to August 1, 1999 in a natural Picea abies forest in Russia. CO2 mixing ratios and stable isotope ratios of CO2 were measured on flask samples taken in two heights within the canopy. Simultaneously, soil and leaf samples were collected and analysed to derive the 18O/16O ratio of the respective water reservoirs and the 13C/12C ratio of the leaf tissue. The main objective of this project was to investigate biospheric gas exchange with soil and vegetation and, thereby, take advantage of the potential of the 18O/16O ratio in atmospheric CO2. Via exchange of oxygen isotopes with associated liquid water reservoirs, leaf CO2 assimilation fluxes generally enrich while soil CO2 respiration fluxes generally deplete the 18O/16O ratio of atmospheric CO2. In the model, we parameterised intra canopy transport by exploiting soil-borne 222Rn as a tracer for turbulent transport. Our approach showed that, in principle, a net ecosystem CO2 flux can be separated into assimilation and respiration fluxes using oxygen isotopes. However, quantitative partitioning is highly sensitive to the respective discrimination factors, and, therefore, also on the parameterisation of internal leaf CO2 concentrations and gradients
Temperature Control of Spring CO2 Fluxes at a Coniferous Forest and a Peat Bog in Central Siberia
Climate change impacts the characteristics of the vegetation carbon-uptake process in the northern Eurasian terrestrial ecosystem. However, the currently available direct CO2 flux measurement datasets, particularly for central Siberia, are insufficient for understanding the current condition in the northern Eurasian carbon cycle. Here, we report daily and seasonal interannual variations in CO2 fluxes and associated abiotic factors measured using eddy covariance in a coniferous forest and a bog near Zotino, Krasnoyarsk Krai, Russia, for April to early June, 2013–2017. Despite the snow not being completely melted, both ecosystems became weak net CO2 sinks if the air temperature was warm enough for photosynthesis. The forest became a net CO2 sink 7–16 days earlier than the bog. After the surface soil temperature exceeded ~1 °C, the ecosystems became persistent net CO2 sinks. Net ecosystem productivity was highest in 2015 for both ecosystems because of the anomalously high air temperature in May compared with other years. Our findings demonstrate that long-term monitoring of flux measurements at the site level, particularly during winter and its transition to spring, is essential for understanding the responses of the northern Eurasian ecosystem to spring warming
Temperature Control of Spring CO2 Fluxes at a Coniferous Forest and a Peat Bog in Central Siberia
Climate change impacts the characteristics of the vegetation carbon-uptake process in the northern Eurasian terrestrial ecosystem. However, the currently available direct CO2 flux measurement datasets, particularly for central Siberia, are insufficient for understanding the current condition in the northern Eurasian carbon cycle. Here, we report daily and seasonal interannual variations in CO2 fluxes and associated abiotic factors measured using eddy covariance in a coniferous forest and a bog near Zotino, Krasnoyarsk Krai, Russia, for April to early June, 2013–2017. Despite the snow not being completely melted, both ecosystems became weak net CO2 sinks if the air temperature was warm enough for photosynthesis. The forest became a net CO2 sink 7–16 days earlier than the bog. After the surface soil temperature exceeded ~1 °C, the ecosystems became persistent net CO2 sinks. Net ecosystem productivity was highest in 2015 for both ecosystems because of the anomalously high air temperature in May compared with other years. Our findings demonstrate that long-term monitoring of flux measurements at the site level, particularly during winter and its transition to spring, is essential for understanding the responses of the northern Eurasian ecosystem to spring warming
Accurate measurements of atmospheric carbon dioxide and methane mole fractions at the Siberian coastal site Ambarchik
Sparse data coverage in the Arctic hampers our understanding of its carbon cycle dynamics and our predictions of the fate of its vast carbon reservoirs in a changing climate. In this paper, we present accurate measurements of atmospheric carbon dioxide (CO2) and methane (CH4) dry air mole fractions at the new atmospheric carbon observation station Ambarchik, which closes a large gap in the atmospheric trace gas monitoring network in northeastern Siberia. The site, which has been operational since August 2014, is located near the delta of the Kolyma River at the coast of the Arctic Ocean. Data quality control of CO2 and CH4 measurements includes frequent calibrations traced to World Meteorological Organization (WMO) scales, employment of a novel water vapor correction, an algorithm to detect the influence of local polluters, and meteorological measurements that enable data selection. The available CO2 and CH4 record was characterized in comparison with in situ data from Barrow, Alaska. A footprint analysis reveals that the station is sensitive to signals from the East Siberian Sea, as well as the northeast Siberian tundra and taiga regions. This makes data from Ambarchik highly valuable for inverse modeling studies aimed at constraining carbon budgets within the pan-Arctic domain, as well as for regional studies focusing on Siberia and the adjacent shelf areas of the Arctic Ocean.Sparse data coverage in the Arctic hampers our understanding of its carbon cycle dynamics and our predictions of the fate of its vast carbon reservoirs in a changing climate. In this paper, we present accurate measurements of atmospheric carbon dioxide (CO2) and methane (CH4) dry air mole fractions at the new atmospheric carbon observation station Ambarchik, which closes a large gap in the atmospheric trace gas monitoring network in northeastern Siberia. The site, which has been operational since August 2014, is located near the delta of the Kolyma River at the coast of the Arctic Ocean. Data quality control of CO2 and CH4 measurements includes frequent calibrations traced to World Meteorological Organization (WMO) scales, employment of a novel water vapor correction, an algorithm to detect the influence of local polluters, and meteorological measurements that enable data selection. The available CO2 and CH4 record was characterized in comparison with in situ data from Barrow, Alaska. A footprint analysis reveals that the station is sensitive to signals from the East Siberian Sea, as well as the northeast Siberian tundra and taiga regions. This makes data from Ambarchik highly valuable for inverse modeling studies aimed at constraining carbon budgets within the pan-Arctic domain, as well as for regional studies focusing on Siberia and the adjacent shelf areas of the Arctic Ocean.Peer reviewe
Strong radiative effect induced by clouds and smoke on forest net ecosystem productivity in central Siberia
Aerosols produced by wildfires are a common phenomenon in boreal regions. For the Siberian taiga, it is still an open question if the effects of aerosols on atmospheric conditions increase net CO2 uptake or photosynthesis. We investigated the factors controlling forest net ecosystem productivity (NEP) and explored how clouds and smoke modulate radiation as a major factor controlling NEP during fire events in the years 2012 and 2013. To characterize the underlying mechanisms of the NEP response to environmental drivers, Artificial Neural Networks (ANNs) were trained by eddy covariance flux measurements nearby the Zotino Tall Tower Observatory (ZOTTO). Total photosynthetically active radiation, vapour pressure deficit, and diffuse fraction explain at about 54-58% of NEP variability. NEP shows a strong negative sensitivity to VPD, and a small positive to f(dlf). A strong diffuse radiation fertilization effect does not exist at ZOTTO forest due to the combined effects of low light intensity, sparse canopy and low leaf area index. Results suggests that light intensity and canopy structure are important factors of the overall diffuse radiation fertilization effect.Peer reviewe
Calibration of TCCON column-averaged CO2: the first aircraft campaign over European TCCON sites
The Total Carbon Column Observing Network (TCCON) is a ground-based network of Fourier Transform Spectrometer (FTS) sites around the globe, where the column abundances of CO2, CH4, N2O, CO and O2 are measured. CO2 is constrained with a precision better than 0.25% (1-σ). To achieve a similarly high accuracy, calibration to World Meteorological Organization (WMO) standards is required. This paper introduces the first aircraft calibration campaign of five European TCCON sites and a mobile FTS instrument. A series of WMO standards in-situ profiles were obtained over European TCCON sites via aircraft and compared with retrievals of CO2 column amounts from the TCCON instruments. The results of the campaign show that the FTS measurements are consistently biased 1.1% ± 0.2% low with respect to WMO standards, in agreement with previous TCCON calibration campaigns. The standard a priori profile for the TCCON FTS retrievals is shown to not add a bias. The same calibration factor is generated using aircraft profiles as a priori and with the TCCON standard a priori. With a calibration to WMO standards, the highly precise TCCON CO2 measurements of total column concentrations provide a suitable database for the calibration and validation of nadir-viewing satellite
Sun-induced chlorophyll fluorescence and photochemical reflectance index improve remote-sensing gross primary production estimates under varying nutrient availability in a typical Mediterranean savanna ecosystem
Este estudio investiga las diferentes actuaciones de ópticas sobre los índices para estimar la producción primaria bruta (GPP) del estrato herbáceo de una sabana mediterránea con diferente disponibilidad de nitrógeno (N) y de fósforo (P). La fluorescencia de la clorofila inducida por el sol sobre el rendimiento calculado en 760 nm (FY760), escala de índice de reflectancia fotoquímica (sPRI), MERIS terrestre (índice de clorofila MTCI) y el índice de vegetación de diferencia normalizada (NDVI) fueron calculadas desde cerca de la superficie y las mediciones de espectroscopia de campo recolectados se hicieron utilizando espectrómetros de alta resolución espectral, que abarcan las regiones del infrarrojo cercano visible. La GPP fue medida utilizando cámaras de dosel en las mismas localidades muestreadas por los espectrómetros. Hemos probado si la eficiencia del uso de los modelos de luz (LUE) impulsados por cantidades de teledetección (RSMs) pueden hacer un mejor seguimiento de los cambios en la GPP causada por fuentes de nutrientes en comparación con aquellos impulsados exclusivamente por datos meteorológicos (MM). En particular, comparamos los espectáculos de diferentes formulaciones de RSM -basándose en la utilización de FY760 o sPRI como proxy para LUE y NDVI MTCI o como una fracción de la radiación fotosintéticamente activa absorbida (APAR f)- con las clásicas de MM. Los resultados mostraron mayor GPP en la N -parcelas experimentales fertilizadas durante el período de crecimiento. Estas diferencias en la GPP desaparecieron en el período de secado, cuando los efectos de la senescencia enmascarada contiene diferencias de potencial debido a la planta N. Por consiguiente, MTCI estaba estrechamente relacionada con la media de la planta N, contenida a través de tratamientos (r2 D 0:86, p < 0:01), porque estaba mal relacionados con GPP (r2 D 0:45, p < 0:05). Por el contrario sPRI y FY760 se correlacionaban bien con GPP durante todo el período de medición. Los resultados revelaron que la relación entre el GPP y FY760 no es única en los tratamientos, pero no se ve afectada por la disponibilidad de N. Los resultados de un análisis de validación cruzada mostró que el MM (AICcv D 127, MEcv D 0:879) superó a RSM (AICcv D 140, MEcv D 0:8737,) cuando la humedad del suelo fue utilizada para restringir la dinámica estacional de LUE. Sin embargo, el análisis residual demostró que las predicciones de GPP con MM son inexactas cuando no revela explícitamente unas variables climáticas en cambios relacionados con el parámetro de nutrientes LUE. Estos resultados sugieren que RSM es un medio valioso para diagnosticar los efectos inducidos por los nutrientes en la actividad fotosintética.This study investigates the performances of different optical indices to estimate gross primary production (GPP) of herbaceous stratum in a Mediterranean savanna with different nitrogen (N) and phosphorous (P) availability. Sun-induced chlorophyll fluorescence yield computed at 760 nm (Fy760), scaled photochemical reflectance index (sPRI), MERIS terrestrial-chlorophyll index (MTCI) and normalized difference vegetation index (NDVI) were computed from near-surface field spectroscopy measurements collected using high spectral resolution spectrometers covering the visible near-infrared regions. GPP was measured using canopy chambers on the same locations sampled by the spectrometers. We tested whether light-use efficiency (LUE) models driven by remote-sensing quantities (RSMs) can better track changes in GPP caused by nutrient supplies compared to those driven exclusively by meteorological data (MM). Particularly, we compared the performances of different RSM formulations – relying on the use of Fy760 or sPRI as a proxy for LUE and NDVI or MTCI as a fraction of absorbed photosynthetically active radiation (f APAR) – with those of classical MM. Results showed higher GPP in the N-fertilized experimental plots during the growing period. These differences in GPP disappeared in the drying period when senescence effects masked out potential differences due to plant N content. Consequently, although MTCI was closely related to the mean of plant N content across treatments (r2 D 0:86, p < 0:01), it was poorly related to GPP (r2 D 0:45, p < 0:05). On the contrary sPRI and Fy760 correlated well with GPP during the whole measurement period. Results revealed that the relationship between GPP and Fy760 is not unique across treatments, but it is affected by N availability. Results from a cross-validation analysis showed that MM (AICcv D 127, MEcv D 0:879) outperformed RSM (AICcv D 140, MEcv D 0:8737) when soil moisture was used to constrain the seasonal dynamic of LUE. However, residual analyses demonstrated that GPP predictions with MM are inaccurate whenever no climatic variable explicitly reveals nutrient-related changes in the LUE parameter. These results suggest that RSM is a valuable means to diagnose nutrient-induced effects on the photosynthetic activity.Trabajo financiado por: Alexander von Humboldt Foundation y la Max Planck Research AwardpeerReviewe
Impacts of a decadal drainage disturbance on surface-atmosphere fluxes of carbon dioxide in a permafrost ecosystem
Hydrologic conditions are a major controlling factor for carbon exchange processes in high-latitude ecosystems. The presence or absence of water-logged conditions can lead to significant shifts in ecosystem structure and carbon cycle processes. In this study, we compared growing season CO2 fluxes of a wet tussock tundra ecosystem from an area affected by decadal drainage to an undisturbed area on the Kolyma floodplain in northeastern Siberia. For this comparison we found the sink strength for CO2 in recent years (2013-2015) to be systematically reduced within the drained area, with a minor increase in photosynthetic uptake due to a higher abundance of shrubs outweighed by a more pronounced increase in respiration due to warmer near-surface soil layers. Still, in comparison to the strong reduction of fluxes immediately following the drainage disturbance in 2005, recent CO2 exchange with the atmosphere over this disturbed part of the tundra indicate a higher carbon turnover, and a seasonal amplitude that is comparable again to that within the control section. This indicates that the local permafrost ecosystem is capable of adapting to significantly different hydrologic conditions without losing its capacity to act as a net sink for CO2 over the growing season. The comparison of undisturbed CO2 flux rates from 2013-2015 to the period of 2002-2004 indicates that CO2 exchange with the atmosphere was intensified, with increased component fluxes (ecosystem respiration and gross primary production) over the past decade. Net changes in CO2 fluxes are dominated by a major increase in photosynthetic uptake, resulting in a stronger CO2 sink in 2013-2015. Application of a MODIS-based classification scheme to separate the growing season into four sub-seasons improved the interpretation of interannual variability by illustrating the systematic shifts in CO2 uptake patterns that have occurred in this ecosystem over the past 10 years and highlighting the important role of the late growing season for net CO2 flux budgets.Peer reviewe
- …