1,090 research outputs found

    Potential of Microalgae in Bioremediation of Wastewater

    Get PDF
    The increase in global pollution, industrialization and fast economic progress are considered to inflict serious consequences to the quality and availability of water throughout the world. Wastewater is generated from three major sources, i.e. industrial, agricultural, and municipal which contain pollutants, such as: xenobiotics, microplastics, heavy metals and augmented by high amount of carbon, phosphorus, and nitrogen compounds. Wastewater treatment is one of the most pressing issues since it cannot be achieved by any specific technology because of the varying nature and concentrations of pollutants and efficiency of the treatment technologies. The degradation capacity of these conventional treatment technologies is limited, especially regarding heavy metals, nutrients, and xenobiotics, steering the researchers to bioremediation using microalgae (Phycoremediation). Bioremediation can be defined as use of microalgae  for removal or biotransformation of pollutants and CO2 from wastewater with concomitant biomass production. However, the usage of wastewaters for the bulk cultivation of microalgae is advantageous for reducing carbon, nutrients cost, minimizing the consumption of freshwater, nitrogen, phosphorus recovery, and removal of other pollutants from wastewater and producing sufficient biomass for value addition for either biofuels or other value-added compounds. Several types of microalgae like Chlorella and Dunaliella have proved their applicability in the treatment of wastewaters. The bottlenecks concerning the microalgal wastewater bioremediation need to be identified and elucidated to proceed in bioremediation using microalgae. This objective of this paper is to provide an insight about the treatment of different wastewaters using microalgae and microalgal potential in the treatment of wastewaters containing heavy metals and emerging contaminants, with the specialized cultivation systems. This review also summarizes the end use applications of microalgal biomass which makes the bioremediation aspect more environmentally sustainable. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

    Solitons in Supersymmety Breaking Meta-Stable Vacua

    Full text link
    In recently found supersymmetry-breaking meta-stable vacua of the supersymmetric QCD, we examine possible exsitence of solitons. Homotopy groups of the moduli space of the meta-stable vacua show that there is no nontrivial soliton for SU(N_c) gauge group. When U(1)_B symmetry present in the theory is gauged, we find non-BPS solitonic (vortex) strings whose existence and properties are predicted from brane configurations. We obtain explicit classical solutions which reproduce the predicitions. For SO(N_c) gauge group, we find there are solitonic strings for N = N_f-N_c+4 = 2, and Z_2 strings for the other N. The strings are meta-stable as they live in the meta-stable vacua.Comment: 30 pages, 14 figures, Comments on stability of non-BPS vortices are added, Comments on sigma model solitons are added, An appendix is adde

    QCD String as Vortex String in Seiberg-Dual Theory

    Full text link
    We construct a classical vortex string solution in a Seiberg-dual theory of N=1 supersymmetric SO(N_c) QCD which flows to a confining phase. We claim that this vortex string is a QCD string, as previouly argued by M.Strassler. In SO(N_c) QCD, it is known that stable QCD strings exist even in the presence of dynamical quarks. We show that our vortex strings are stable in the Seiberg-dual theory.Comment: 15 pages, 1 figur

    Keck and ESO-VLT View of the Symmetry of the Ejecta of the XRF/SN 2006aj

    Get PDF
    Nebular-phase spectra of SN 2006aj, which was discovered in coincidence with X-ray flash 060218, were obtained with Keck in 2006 July and the Very Large Telescope in 2006 September. At the latter epoch spectropolarimetry was also attempted, yielding an upper limit of ~ 2% for the polarization. The spectra show strong emission lines of [OI] and MgI], as expected from a Type Ic supernova, but weak CaII lines. The [FeII] lines that were strong in the spectra of SN 1998bw are much weaker in SN 2006aj, consistent with the lower luminosity of this SN. The outer velocity of the line-emitting ejecta is ~ 8000 km/s in July and ~ 7400 km/s in September, consistent with the relatively low kinetic energy of expansion of SN 2006aj. All emission lines have similar width, and the profiles are symmetric, indicating that no major asymmetries are present in the ejecta at the velocities sampled by the nebular lines (v < 8000 km/s), except perhaps in the innermost part. The spectra were modelled with a non-LTE code. The mass of 56Ni required to power the emission spectrum is ~ 0.20 Msun, in excellent agreement with the results of early light curve modelling. The oxygen mass is ~ 1.5 Msun, again much less than in SN 1998bw but larger by ~ 0.7 Msun than the value derived from the early-time modelling. The total ejected mass is ~ 2 Msun below 8000 km/s. This confirms that SN 2006aj was only slightly more massive and energetic than the prototypical Type Ic SN 1994I, but also indicates the presence of a dense inner core, containing ~ 1 Msun of mostly oxygen and carbon. The presence of such a core is inferred for all broad-lined SNe Ic. This core may have the form of an equatorial oxygen-dominated region, but it is too deep to affect the early light curve and too small to affect the late polarization spectrum.Comment: 20 pages, 6 figures. Accepted for publication in the Astrophysical Journa

    Stringy Derivation of Nahm Construction of Monopoles

    Full text link
    We derive the Nahm construction of monopoles from exact tachyon condensation on unstable D-branes. The Dirac operator used in the Nahm construction is identified with the tachyon profile in our D-brane approach, and we provide physical interpretation of the procedures Nahm gave. Crucial is the introduction of infinite number of brane-antibranes from which arbitrary D-brane can be constrcuted, exhibitting a unified view of various D-branes. We explicitly show the equivalence of the D3-brane boundary state with the monopole profile and the D1-brane boundary state with the Nahm data as transverse scalars.Comment: 18 pages, 4 eps figures, JHEP style, comments about low energy limits added, references adde

    Observation of a Highly Spin Polarized Topological Surface State in GeBi2_{2}Te4_{4}

    Get PDF
    Spin polarization of a topological surface state for GeBi2_2Te4_4, the newly discovered three-dimensional topological insulator, has been studied by means of the state of the art spin- and angle-resolved photoemission spectroscopy. It has been revealed that the disorder in the crystal has a minor effect on the surface state spin polarization and it exceeds 75% near the Dirac point in the bulk energy gap region (\sim180 meV). This new finding for GeBi2_{2}Te4_{4} promises not only to realize a highly spin polarized surface isolated transport but to add new functionality to its thermoelectric and thermomagnetic properties.Comment: 5 pages, 4 figure

    Brane Decay and Death of Open Strings

    Full text link
    We show how open strings cease to propagate when unstable D-branes decay. The information on the propagation is encoded in BSFT two-point functions for arbitrary profiles of open string excitations. We evaluate them in tachyon condensation backgrounds corresponding to (i) static spatial tachyon kink (= lower dimensional BPS D-brane) and (ii) homogeneous rolling tachyon. For (i) the propagation is restricted to the directions along the tachyon kink, while for (ii) all the open string excitations cease to propagate at late time and are subject to a collapsed light cone characterized by Carrollian contraction of Lorentz group.Comment: 19 pages, published version (typos corrected, a reference added

    Charged Vortices in High Temperature Superconductors Probed by NMR

    Get PDF
    We report a first experimental evidence that a vortex in the high temperature superconductors (HTSC) traps a finite electric charge from the high resolution measurements of the nuclear quadrupole frequencies. In slightly overdoped YBa_2Cu_3O_7 the vortex is negatively charged by trapping electrons, while in underdoped YBa_2Cu_4O_8 it is positively charged by expelling electrons. The sign of the trapped charge is opposite to the sign predicted by the conventional BCS theory. Moreover, in both materials, the deviation of the magnitude of the charge from the theory is also significant. These unexpected features can be attributed to the novel electronic structure of the vortex in HTSC.Comment: 6 pages, 7 figures, to be published in Phys Rev.

    A molecular dynamics simulation of polymer crystallization from oriented amorphous state

    Full text link
    Molecular process of crystallization from an oriented amorphous state was reproduced by molecular dynamics simulation for a realistic polyethylene model. Initial oriented amorphous state was obtained by uniaxial drawing an isotropic glassy state at 100 K. By the temperature jump from 100 K to 330 K, there occurred the crystallization into the fiber structure, during the process of which we observed the developments of various order parameters. The real space image and its Fourier transform revealed that a hexagonally ordered domain was initially formed, and then highly ordered crystalline state with stacked lamellae developed after further adjustment of the relative heights of the chains along their axes.Comment: 4 pages, 3 figure

    Domain-Wall Free-Energy of Spin Glass Models:Numerical Method and Boundary Conditions

    Full text link
    An efficient Monte Carlo method is extended to evaluate directly domain-wall free-energy for randomly frustrated spin systems. Using the method, critical phenomena of spin-glass phase transition is investigated in 4d +/-J Ising model under the replica boundary condition. Our values of the critical temperature and exponent, obtained by finite-size scaling, are in good agreement with those of the standard MC and the series expansion studies. In addition, two exponents, the stiffness exponent and the fractal dimension of the domain wall, which characterize the ordered phase, are obtained. The latter value is larger than d-1, indicating that the domain wall is really rough in the 4d Ising spin glass phase.Comment: 9 pages Latex(Revtex), 8 eps figure
    corecore