31 research outputs found

    Tensile & shear strength of porous dust agglomerates

    Full text link
    Context.Within the sequential accretion scenario of planet formation, planets are build up through a sequence sticking collisions. The outcome of collisions between porous dust aggregates is very important for the growth from very small dust particles to planetesimals. In this work we determine the necessary material properties of dust aggregates as a function the porosity. Aims: Continuum models such as SPH that are capable of simulating collisions of macroscopic dust aggregates require a set of material parameters. Some of them such as the tensile and shear strength are difficult to obtain from laboratory experiments. The aim of this work is to determine these parameters from ab-initio molecular dynamics simulations. Methods: We simulate the behavior of porous dust aggregates using a detailed micro-physical model of the interaction of spherical grains that includes adhesion forces, rolling, twisting, and sliding. Using different methods of preparing the samples we study the strength behavior of our samples with varying porosity and coordination number of the material. Results: For the tensile strength, we can reproduce data from laboratory experiments very well. For the shear strength, there are no experimental data available. The results from our simulations differ significantly from previous theoretical models, which indicates that the latter might not be sufficient to describe porous dust aggregates. Conclusions: We have provided functional behavior of tensile and shear strength of porous dust aggregates as a function of the porosity that can be directly applied in continuum simulations of these objects in planet formation scenarios.Comment: Accepted for publication in A&

    Novel diffusion mechanism on the GaAs(001) surface: the role of adatom-dimer interaction

    Get PDF
    Employing first principles total energy calculations we have studied the behavior of Ga and Al adatoms on the GaAs(001)-beta2 surface. The adsorption site and two relevant diffusion channels are identified. The channels are characterized by different adatom-surface dimer interaction. Both affect in a novel way the adatom migration: in one channel the diffusing adatom jumps across the surface dimers and leaves the dimer bonds intact, in the other one the surface dimer bonds are broken. The two channels are taken into account to derive effective adatom diffusion barriers. From the diffusion barriers we conclude a strong diffusion anisotropy for both Al and Ga adatoms with the direction of fastest diffusion parallel to the surface dimers. In agreement with experimental observations we find higher diffusion barriers for Al than for Ga.Comment: 4 pages, 2 figures, Phys. Rev. Lett. 79 (1997). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Unusual multisystemic involvement and a novel BAG3 mutation revealed by NGS screening in a large cohort of myofibrillar myopathies

    Get PDF
    Myofibrillar myopathies (MFM) are a group of phenotypically and genetically heterogeneous neuromuscular disorders, which are characterized by protein aggregations in muscle fibres and can be associated with multisystemic involvement.Methods We screened a large cohort of 38 index patients with MFM for mutations in the nine thus far known causative genes using Sanger and next generation sequencing (NGS). We studied the clinical and histopathological characteristics in 38 index patients and five additional relatives (n = 43) and particularly focused on the associated multisystemic symptoms.Results We identified 14 heterozygous mutations (diagnostic yield of 37%), among them the novel p.Pro209Gln mutation in the BAG3 gene, which was associated with onset in adulthood, a mild phenotype and an axonal sensorimotor polyneuropathy, in the absence of giant axons at the nerve biopsy. We revealed several novel clinical phenotypes and unusual multisystemic presentations with previously described mutations: hearing impairment with a FLNC mutation, dysphonia with a mutation in DES and the first patient with a FLNC mutation presenting respiratory insufficiency as the initial symptom. Moreover, we described for the first time respiratory insufficiency occurring in a patient with the p.Gly154Ser mutation in CRYAB. Interestingly, we detected a polyneuropathy in 28% of the MFM patients, including a BAG3 and a MYOT case, and hearing impairment in 13%, including one patient with a FLNC mutation and two with mutations in the DES gene. In four index patients with a mutation in one of the MFM genes, typical histological findings were only identified at the ultrastructural level (29%).Conclusions We conclude that extraskeletal symptoms frequently occur in MFM, particularly cardiac and respiratory involvement, polyneuropathy and/or deafness. BAG3 mutations should be considered even in cases with a mild phenotype or an adult onset. We identified a genetic defect in one of the known genes in less than half of the MFM patients, indicating that more causative genes are still to be found. Next generation sequencing techniques should be helpful in achieving this aim

    Effect of strain on surface diffusion in semiconductor heteroepitaxy

    Full text link
    We present a first-principles analysis of the strain renormalization of the cation diffusivity on the GaAs(001) surface. For the example of In/GaAs(001)-c(4x4) it is shown that the binding of In is increased when the substrate lattice is expanded. The diffusion barrier \Delta E(e) has a non-monotonic strain dependence with a maximum at compressive strain values (e 0) studied. We discuss the consequences of spatial variations of both the binding energy and the diffusion barrier of an adatom caused by the strain field around a heteroepitaxial island. For a simplified geometry, we evaluate the speed of growth of two coherently strained islands on the GaAs(001) surface and identify a growth regime where island sizes tend to equalize during growth due to the strain dependence of surface diffusion.Comment: 10 pages, 8 figures, LaTeX2e, to appear in Phys. Rev. B (2001). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
    corecore