995 research outputs found

    Virtual reality facial emotion recognition in social environments:An eye-tracking study

    Get PDF
    BACKGROUND: Virtual reality (VR) enables the administration of realistic and dynamic stimuli within a social context for the assessment and training of emotion recognition. We tested a novel VR emotion recognition task by comparing emotion recognition across a VR, video and photo task, investigating covariates of recognition and exploring visual attention in VR. METHODS: Healthy individuals (n = 100) completed three emotion recognition tasks; a photo, video and VR task. During the VR task, emotions of virtual characters (avatars) in a VR street environment were rated, and eye-tracking was recorded in VR. RESULTS: Recognition accuracy in VR (overall 75%) was comparable to the photo and video task. However, there were some differences; disgust and happiness had lower accuracy rates in VR, and better accuracy was achieved for surprise and anger in VR compared to the video task. Participants spent more time identifying disgust, fear and sadness than surprise and happiness. In general, attention was directed longer to the eye and nose areas than the mouth. DISCUSSION: Immersive VR tasks can be used for training and assessment of emotion recognition. VR enables easily controllable avatars within environments relevant for daily life. Validated emotional expressions and tasks will be of relevance for clinical applications

    Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier

    Get PDF
    Although interferon-λ [also known as type III interferon or interleukin-28 (IL-28)/IL-29] restricts infection by several viruses, its inhibitory mechanism has remained uncertain. We used recombinant interferon-λ and mice lacking the interferon-λ receptor (IFNLR1) to evaluate the effect of interferon-λ on infection with West Nile virus, an encephalitic flavivirus. Cell culture studies in mouse keratinocytes and dendritic cells showed no direct antiviral effect of exogenous interferon-λ, even though expression of interferon-stimulated genes was induced. We observed no differences in West Nile virus burden between wild-type and Ifnlr1-/- mice in the draining lymph nodes, spleen, or blood. We detected increased West Nile virus infection in the brain and spinal cord of Ifnlr1-/- mice, yet this was not associated with a direct antiviral effect in mouse neurons. Instead, we observed an increase in blood-brain barrier permeability in Ifnlr1-/- mice. Treatment of mice with pegylated interferon-λ2 resulted in decreased blood-brain barrier permeability, reduced West Nile virus infection in the brain without affecting viremia, and improved survival against lethal virus challenge. An in vitro model of the blood-brain barrier showed that interferon-λ signaling in mouse brain microvascular endothelial cells increased transendothelial electrical resistance, decreased virus movement across the barrier, and modulated tight junction protein localization in a protein synthesis- and signal transducer and activator of transcription 1 (STAT1)-independent manner. Our data establish an indirect antiviral function of interferon-λ in which noncanonical signaling through IFNLR1 tightens the blood-brain barrier and restricts viral neuroinvasion and pathogenesis

    Comparing quality of life and postoperative pain after limited access and conventional aortic valve replacement: design and rationale of the LImited access aortic valve replacement (LIAR) trial

    Get PDF
    Background: Surgical aortic valve replacement (SAVR) via limited access approaches ('mini-AVR') have proven to be safe alternative for the surgical treatment of aortic valve disease. However, it remains unclear whether these less invasive approaches are associated with improved quality of life and/or reduced postoperative pain when compared to conventional SAVR via full median sternotomy (FMS).Study design: The LImited access Aortic valve Replacement (LIAR) trial is a single-center, single blind randomized controlled clinical trial comparing 2 arms of 80 patients undergoing limited access SAVR via J-shaped upper hemi-sternotomy (UHS) or conventional SAVR through FMS. In all randomized patients, the diseased native aortic valve is planned to be replaced with a rapid deployment stented bioprosthesis. Patients unwilling or unable to participate in the randomized trial will be treated conventionally via SAVR via FMS and with implantation of a sutured valve prosthesis. These patients will participate in a prospective registry.Study methods: Primary outcome is improvement in cardiac-specific quality of life, measured by two domains of the Kansas City Cardiomyopathy Questionnaire up to one year after surgery. Secondary outcomes include, but are not limited to: generic quality of life measured with the Short Form-36, postoperative pain, perioperative (technical success rate, operating time) and postoperative outcomes (30-day and one-year mortality), complication rate and hospital length of stay.Conclusion: The LIAR trial is designed to determine whether a limited access approach for SAVR ("mini-AVR") is associated with improved quality of life and/or reduced postoperative pain compared with conventional SAVR through FMS

    Exact solution of Schrodinger equation for Pseudoharmonic potential

    Get PDF
    Exact solution of Schrodinger equation for the pseudoharmonic potential is obtained for an arbitrary angular momentum. The energy eigenvalues and corresponding eigenfunctions are calculated by Nikiforov-Uvarov method. Wavefunctions are expressed in terms of Jacobi polynomials. The energy eigenvalues are calculated numerically for some values of l and n with n<5 for some diatomic molecules.Comment: 10 page

    Carrier relaxation, pseudogap, and superconducting gap in high-Tc cuprates: A Raman scattering study

    Full text link
    We describe results of electronic Raman-scattering experiments in differently doped single crystals of Y-123 and Bi-2212. The comparison of AF insulating and metallic samples suggests that at least the low-energy part of the spectra originates predominantly from excitations of free carriers. We therefore propose an analysis of the data in terms of a memory function approach. Dynamical scattering rates and mass-enhancement factors for the carriers are obtained. In B2g symmetry the Raman data compare well to the results obtained from ordinary and optical transport. For underdoped materials the dc scattering rates in B1g symmetry become temperature independent and considerably larger than in B2g symmetry. This increasing anisotropy is accompanied by a loss of spectral weight in B2g symmetry in the range between the superconducting transition at Tc and a characteristic temperature T* of order room temperature which compares well with the pseudogap temperature found in other experiments. The energy range affected by the pseudogap is doping and temperature independent. The integrated spectral loss is approximately 25% in underdoped samples and becomes much weaker towards higher carrier concentration. In underdoped samples, superconductivity related features in the spectra can be observed only in B2g symmetry. The peak frequencies scale with Tc. We do not find a direct relation between the pseudogap and the superconducting gap.Comment: RevTeX, 21 pages, 24 gif figures. For PostScript with embedded eps figures, see http://www.wmi.badw-muenchen.de/~opel/k2.htm

    Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.

    Get PDF
    Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    Multilab EcoFAB study shows highly reproducible physiology and depletion of soil metabolites by a model grass

    Get PDF
    There is a dynamic reciprocity between plants and their environment: soil physiochemical properties influence plant morphology and metabolism, and root morphology and exudates shape the environment surrounding roots. Here, we investigate the reproducibility of plant trait changes in response to three growth environments. We utilized fabricated ecosystem (EcoFAB) devices to grow the model grass Brachypodium distachyon in three distinct media across four laboratories: phosphate-sufficient and -deficient mineral media allowed assessment of the effects of phosphate starvation, and a complex, sterile soil extract represented a more natural environment with yet uncharacterized effects on plant growth and metabolism. Tissue weight and phosphate content, total root length, and root tissue and exudate metabolic profiles were consistent across laboratories and distinct between experimental treatments. Plants grown in soil extract were morphologically and metabolically distinct, with root hairs four times longer than with other growth conditions. Further, plants depleted half of the metabolites investigated from the soil extract. To interact with their environment, plants not only adapt morphology and release complex metabolite mixtures, but also selectively deplete a range of soil-derived metabolites. The EcoFABs utilized here generated high interlaboratory reproducibility, demonstrating their value in standardized investigations of plant traits

    Measurement of Triple-Gauge-Boson Couplings of the W Boson at LEP

    Get PDF
    We report on measurements of the triple-gauge-boson couplings of the W boson in e+e- collisions with the L3 detector at LEP. W-pair, single-W and single-photon events are analysed in a data sample corresponding to a total luminosity of 76.7 pb^{-1} collected at centre-of-mass energies between 161 GeV and 183 GeV. CP-conserving as well as both C- and P-conserving triple-gauge-boson couplings are determined. The results, in good agreement with the Standard-Model expectations, confirm the existence of the self coupling among the electroweak gauge bosons and constrain its structure
    • 

    corecore