87 research outputs found

    Novel regulatory therapies for prevention of Graft-versus-host disease

    Get PDF
    Graft-versus-host disease is one of the major transplant-related complications in allogeneic hematopoietic stem cell transplantation. Continued efforts have been made to prevent the occurrence of severe graft-versus-host disease by eliminating or suppressing donor-derived effector T cells. Conventional immunosuppression does not adequately prevent graft-versus-host disease, especially in mismatched transplants. Unfortunately, elimination of donor-derived T cells impairs stem cell engraftment, and delays immunologic reconstitution, rendering the recipient susceptible to post-transplant infections and disease relapse, with potentially lethal consequences. In this review, we discuss the role of dynamic immune regulation in controlling graft-versus-host disease, and how cell-based therapies are being developed using regulatory T cells and other tolerogenic cells for the prevention and treatment of graft-versus-host disease. In addition, advances in the design of cytoreductive conditioning regimens to selectively target graft-versus-host disease-inducing donor-derived T cells that have improved the safety of allogeneic stem cell transplantation are reviewed. Finally, we discuss advances in our understanding of the tolerogenic facilitating cell population, a phenotypically and functionally distinct population of bone marrow-derived cells which promote hematopoietic stem cell engraftment while reducing the risk of graft-versus-host disease

    CD5 expression promotes IL-10 production through activation of the MAPK/Erk pathway and upregulation of TRPC1 channels in B lymphocytes.

    Get PDF
    CD5 is constitutively expressed on T cells and a subset of mature normal and leukemic B cells in patients with chronic lymphocytic leukemia (CLL). Important functional properties are associated with CD5 expression in B cells, including signal transducer and activator of transcription 3 activation, IL-10 production and the promotion of B-lymphocyte survival and transformation. However, the pathway(s) by which CD5 influences the biology of B cells and its dependence on B-cell receptor (BCR) co-signaling remain unknown. In this study, we show that CD5 expression activates a number of important signaling pathways, including Erk1/2, leading to IL-10 production through a novel pathway independent of BCR engagement. This pathway is dependent on extracellular calcium (Ca2+) entry facilitated by upregulation of the transient receptor potential channel 1 (TRPC1) protein. We also show that Erk1/2 activation in a subgroup of CLL patients is associated with TRPC1 overexpression. In this subgroup of CLL patients, small inhibitory RNA (siRNA) for CD5 reduces TRPC1 expression. Furthermore, siRNAs for CD5 or for TRPC1 inhibit IL-10 production. These findings provide new insights into the role of CD5 in B-cell biology in health and disease and could pave the way for new treatment strategies for patients with B-CLL

    Characterization of Protective Human CD4+CD25+ FOXP3+ Regulatory T Cells Generated with IL-2, TGF-β and Retinoic Acid

    Get PDF
    BACKGROUND: Protective CD4+CD25+ regulatory T cells bearing the Forkhead Foxp3 transcription factor can now be divided into three subsets: Endogenous thymus-derived cells, those induced in the periphery, and another subset induced ex-vivo with pharmacological amounts of IL-2 and TGF-β. Unfortunately, endogenous CD4+CD25+ regulatory T cells are unstable and can be converted to effector cells by pro-inflammatory cytokines. Although protective Foxp3+CD4+CD25+ cells resistant to proinflammatory cytokines have been generated in mice, in humans this result has been elusive. Our objective, therefore, was to induce human naïve CD4+ cells to become stable, functional CD25+ Foxp3+ regulatory cells that were also resistant to the inhibitory effects of proinflammatory cytokines. METHODOLOGY/PRINCIPAL FINDINGS: The addition of the vitamin A metabolite, all-trans retinoic acid (atRA) to human naïve CD4+ cells suboptimally activated with IL-2 and TGF-β enhanced and stabilized FOXP3 expression, and accelerated their maturation to protective regulatory T cells. AtRA, by itself, accelerated conversion of naïve to mature cells but did not induce FOXP3 or suppressive activity. The combination of atRA and TGF-β enabled CD4+CD45RA+ cells to express a phenotype and trafficking receptors similar to natural Tregs. AtRA/TGF-β-induced CD4+ regs were anergic and low producers of IL-2. They had potent in vitro suppressive activity and protected immunodeficient mice from a human-anti-mouse GVHD as well as expanded endogenous Tregs. However, treatment of endogenous Tregs with IL-1β and IL-6 decreased FOXP3 expression and diminished their protective effects in vivo while atRA-induced iTregs were resistant to these inhibitory effects. CONCLUSIONS/SIGNIFICANCE: We have developed a methodology that induces human CD4(+) cells to rapidly become stable, fully functional suppressor cells that are also resistant to proinflammatory cytokines. This methodology offers a practical novel strategy to treat human autoimmune diseases and prevent allograft rejection without the use of agents that kill cells or interfere with signaling pathways

    Common Gamma Chain Cytokines Promote Rapid In Vitro Expansion of Allo-Specific Human CD8+ Suppressor T Cells

    Get PDF
    Human CD8+ regulatory T cells, particularly the CD8+CD28− T suppressor cells, have emerged as an important modulator of alloimmunity. Understanding the conditions under which these cells are induced and/or expanded would greatly facilitate their application in future clinical trials. In the current study, we develop a novel strategy that combines common gamma chain (γc) cytokines IL-2, IL-7 and IL-15 and donor antigen presenting cells (APCs) to stimulate full HLA-mismatched allogeneic human CD8+ T cells which results in significant expansions of donor-specific CD8+CD28− T suppressor cells in vitro. The expanded CD8+CD28− T cells exhibit increased expressions of CTLA-4, FoxP3, and CD25, while down-regulate expressions of CD56, CD57, CD127, and perforin. Furthermore, these cells suppress proliferation of CD4+ T cells in a contact-dependent and cytokine-independent manner. Interestingly, the specificity of suppression is restricted by the donor HLA class I antigens but promiscuous to HLA class II antigens, providing a potential mechanism for linked suppression. Taken together, our results demonstrate a novel role for common γc cytokines in combination with donor APCs in the expansion of donor-specific CD8+CD28− T suppressor cells, and represent a robust strategy for in vitro generation of such cells for adoptive cellular immunotherapy in transplantation

    B Cell Activating Factor (BAFF) and T Cells Cooperate to Breach B Cell Tolerance in Lupus-Prone New Zealand Black (NZB) Mice

    Get PDF
    The presence of autoantibodies in New Zealand Black (NZB) mice suggests a B cell tolerance defect however the nature of this defect is unknown. To determine whether defects in B cell anergy contribute to the autoimmune phenotype in NZB mice, soluble hen egg lysozyme (sHEL) and anti-HEL Ig transgenes were bred onto the NZB background to generate double transgenic (dTg) mice. NZB dTg mice had elevated levels of anti-HEL antibodies, despite apparently normal B cell functional anergy in-vitro. NZB dTg B cells also demonstrated increased survival and abnormal entry into the follicular compartment following transfer into sHEL mice. Since this process is dependent on BAFF, BAFF serum and mRNA levels were assessed and were found to be significantly elevated in NZB dTg mice. Treatment of NZB sHEL recipient mice with TACI-Ig reduced NZB dTg B cell survival following adoptive transfer, confirming the role of BAFF in this process. Although NZB mice had modestly elevated BAFF, the enhanced NZB B cell survival response appeared to result from an altered response to BAFF. In contrast, T cell blockade had a minimal effect on B cell survival, but inhibited anti-HEL antibody production. The findings suggest that the modest BAFF elevations in NZB mice are sufficient to perturb B cell tolerance, particularly when acting in concert with B cell functional abnormalities and T cell help

    Analysis of ancestral and functionally relevant CD5 variants in systemic lupus erythematosus patients

    Get PDF
    OBJECTIVE: CD5 plays a crucial role in autoimmunity and is a well-established genetic risk factor of developing RA. Recently, evidence of positive selection has been provided for the CD5 Pro224-Val471 haplotype in East Asian populations. The aim of the present work was to further analyze the functional relevance of non-synonymous CD5 polymorphisms conforming the ancestral and the newly derived haplotypes (Pro224-Ala471 and Pro224-Val471, respectively) as well as to investigate the potential role of CD5 on the development of SLE and/or SLE nephritis. METHODS: The CD5 SNPs rs2241002 (C/T; Pro224Leu) and rs2229177 (C/T; Ala471Val) were genotyped using TaqMan allelic discrimination assays in a total of 1,324 controls and 681 SLE patients of Spanish origin. In vitro analysis of CD3-mediated T cell proliferative and cytokine response profiles of healthy volunteers homozygous for the above mentioned CD5 haplotypes were also analyzed. RESULTS: T-cell proliferation and cytokine release were significantly increased showing a bias towards to a Th2 profile after CD3 cross-linking of peripheral mononuclear cells from healthy individuals homozygous for the ancestral Pro224-Ala471 (CC) haplotype, compared to the more recently derived Pro224-Val471 (CT). The same allelic combination was statistically associated with Lupus nephritis. CONCLUSION: The ancestral Ala471 CD5 allele confers lymphocyte hyper-responsiveness to TCR/CD3 cross-linking and is associated with nephritis in SLE patients

    Immunological aspects in chronic lymphocytic leukemia (CLL) development

    Get PDF
    Chronic lymphocytic leukemia (CLL) is unique among B cell malignancies in that the malignant clones can be featured either somatically mutated or unmutated IGVH genes. CLL cells that express unmutated immunoglobulin variable domains likely underwent final development prior to their entry into the germinal center, whereas those that express mutated variable domains likely transited through the germinal center and then underwent final development. Regardless, the cellular origin of CLL remains unknown. The aim of this review is to summarize immunological aspects involved in this process and to provide insights about the complex biology and pathogenesis of this disease. We propose a mechanistic hypothesis to explain the origin of B-CLL clones into our current picture of normal B cell development. In particular, we suggest that unmutated CLL arises from normal B cells with self-reactivity for apoptotic bodies that have undergone receptor editing, CD5 expression, and anergic processes in the bone marrow. Similarly, mutated CLL would arise from cells that, while acquiring self-reactivity for autoantigens—including apoptotic bodies—in germinal centers, are also still subject to tolerization mechanisms, including receptor editing and anergy. We believe that CLL is a proliferation of B lymphocytes selected during clonal expansion through multiple encounters with (auto)antigens, despite the fact that they differ in their state of activation and maturation. Autoantigens and microbial pathogens activate BCR signaling and promote tolerogenic mechanisms such as receptor editing/revision, anergy, CD5+ expression, and somatic hypermutation in CLL B cells. The result of these tolerogenic mechanisms is the survival of CLL B cell clones with similar surface markers and homogeneous gene expression signatures. We suggest that both immunophenotypic surface markers and homogenous gene expression might represent the evidence of several attempts to re-educate self-reactive B cells

    Therapeutic application of T regulatory cells in composite tissue allotransplantation

    Full text link

    FcγRIIb differentially regulates pre-immune and germinal center B cell tolerance in mouse and human.

    Get PDF
    Several tolerance “checkpoints” exist throughout B cell development to control autoreactive B cells and prevent the generation of pathogenic autoantibodies. FcγRIIb is an Fc receptor that inhibits B cell activation and, if defective, is associated with autoimmune disease. Its impact on specific B cell tolerance checkpoints is unknown. Here we show that reduced expression of FcγRIIb leads to increased deletion and anergy of autoreactive immature B cells, but despite this autoreactive B cells expand in the germinal center and serum autoantibodies are produced, even in response to exogenous non-self antigen. Thus, we show FcγRIIb has opposing effects on pre- and post-immune tolerance checkpoints, and suggest B cell tolerance requires the control of “bystander” germinal center B cells with low or no affinity for the immunization antigen.This work was funded by the Wellcome Trust (Programme Grant Number 083650/Z/07/Z to KGCS) and supported by the NIHR Cambridge Biomedical Research Centre. ME was funded by the Wellcome Trust (Programme Grant Number 083650/Z/07/Z), by a Junior Team Leader starting grant from the Laboratory of Excellence in Research on Medication and Innovative Therapeutics (LabEx LERMIT) supported by a grant from ANR (ANR-10-LABX-33) under the program “Investissements d'Avenir” (ANR-11-IDEX-0003-01) and by an ANR @RAction starting grant (ANR-14-ACHN- 0008). KGCS is an NIHR Senior Clinical Investigator and a Distinguished Innovator of the Lupus Research Institute
    corecore