942 research outputs found

    Proposal for the Ericiolaceae (Prymnesiophyceae, Haptophyta) fam. nov.

    Get PDF
    The extant nannolith-bearing genera Ericiolus and Pileolosphaera are distinguished by the possession of triradiate nannoliths with a very similar and highly distinctive structural pattern. The nannoliths display three symmetrically arranged rays that develop from a nannolith center but show no obvious affinities to any other currently known extant coccolithophore. On this basis, we propose the establishment of a new family, Ericiolaceae fam. nov., to accommodate Ericiolus and Pileolosphaera

    Mobile phone use and risk of acoustic neuroma: results of the Interphone case–control study in five North European countries

    Get PDF
    There is public concern that use of mobile phones could increase the risk of brain tumours. If such an effect exists, acoustic neuroma would be of particular concern because of the proximity of the acoustic nerve to the handset. We conducted, to a shared protocol, six population-based case–control studies in four Nordic countries and the UK to assess the risk of acoustic neuroma in relation to mobile phone use. Data were collected by personal interview from 678 cases of acoustic neuroma and 3553 controls. The risk of acoustic neuroma in relation to regular mobile phone use in the pooled data set was not raised (odds ratio (OR)=0.9, 95% confidence interval (CI): 0.7–1.1). There was no association of risk with duration of use, lifetime cumulative hours of use or number of calls, for phone use overall or for analogue or digital phones separately. Risk of a tumour on the same side of the head as reported phone use was raised for use for 10 years or longer (OR=1.8, 95% CI: 1.1–3.1). The study suggests that there is no substantial risk of acoustic neuroma in the first decade after starting mobile phone use. However, an increase in risk after longer term use or after a longer lag period could not be ruled out

    Luminescence Dating in Fluvial Settings: Overcoming the Challenge of Partial Bleaching

    Get PDF
    Optically stimulated luminescence (OSL) dating is a versatile technique that utilises the two most ubiquitous minerals on Earth (quartz or K-feldspar) for constraining the timing of sediment deposition. It has provided accurate ages in agreement with independent age control in many fluvial settings, but is often characterised by partial bleaching of individual grains. Partial bleaching can occur where sunlight exposure is limited and so only a portion of the grains in the sample was exposed to sunlight prior to burial, especially in sediment-laden, turbulent or deep water columns. OSL analysis on multiple grains can provide accurate ages for partially bleached sediments where the OSL signal intensity is dominated by a single brighter grain, but will overestimate the age where the OSL signal intensity is equally as bright (often typical of K-feldspar) or as dim (sometimes typical of quartz). In such settings, it is important to identify partial bleaching and the minimum dose population, preferably by analysing single grains, and applying the appropriate statistical age model to the dose population obtained for each sample. To determine accurate OSL ages using these age models, it is important to quantify the amount of scatter (or overdispersion) in the well-bleached part of the partially bleached dose distribution, which can vary between sediment samples depending upon the bedrock sources and transport histories of grains. Here, we discuss how the effects of partial bleaching can be easily identified and overcome to determine accurate ages. This discussion will therefore focus entirely on the burial dose determination for OSL dating, rather than the dose-rate, as only the burial doses are impacted by the effects of partial bleaching

    A Meta-Analysis of Seaweed Impacts on Seagrasses: Generalities and Knowledge Gaps

    Get PDF
    Seagrasses are important habitat-formers and ecosystem engineers that are under threat from bloom-forming seaweeds. These seaweeds have been suggested to outcompete the seagrasses, particularly when facilitated by eutrophication, causing regime shifts where green meadows and clear waters are replaced with unstable sediments, turbid waters, hypoxia, and poor habitat conditions for fishes and invertebrates. Understanding the situations under which seaweeds impact seagrasses on local patch scales can help proactive management and prevent losses at greater scales. Here, we provide a quantitative review of available published manipulative experiments (all conducted at the patch-scale), to test which attributes of seaweeds and seagrasses (e.g., their abundances, sizes, morphology, taxonomy, attachment type, or origin) influence impacts. Weighted and unweighted meta-analyses (Hedges d metric) of 59 experiments showed generally high variability in attribute-impact relationships. Our main significant findings were that (a) abundant seaweeds had stronger negative impacts on seagrasses than sparse seaweeds, (b) unattached and epiphytic seaweeds had stronger impacts than ‘rooted’ seaweeds, and (c) small seagrass species were more susceptible than larger species. Findings (a) and (c) were rather intuitive. It was more surprising that ‘rooted’ seaweeds had comparatively small impacts, particularly given that this category included the infamous invasive Caulerpa species. This result may reflect that seaweed biomass and/or shading and metabolic by-products like anoxia and sulphides could be lower for rooted seaweeds. In conclusion, our results represent simple and robust first-order generalities about seaweed impacts on seagrasses. This review also documented a limited number of primary studies. We therefore identified major knowledge gaps that need to be addressed before general predictive models on seaweed-seagrass interactions can be build, in order to effectively protect seagrass habitats from detrimental competition from seaweeds

    Congenital bovine spinal dysmyelination is caused by a missense mutation in the SPAST gene

    Get PDF
    Bovine spinal dysmyelination (BSD) is a recessive congenital neurodegenerative disease in cattle (Bos taurus) characterized by pathological changes of the myelin sheaths in the spinal cord. The occurrence of BSD is a longstanding problem in the American Brown Swiss (ABS) breed and in several European cattle breeds upgraded with ABS. Here, we show that the disease locus on bovine chromosome 11 harbors the SPAST gene that, when mutated, is responsible for the human disorder hereditary spastic paraplegia (HSP). Initially, SPAST encoding Spastin was considered a less likely candidate gene for BSD since the modes of inheritance as well as the time of onset and severity of symptoms differ widely between HSP and BSD. However, sequence analysis of the bovine SPAST gene in affected animals identified a R560Q substitution at a position in the ATPase domain of the Spastin protein that is invariant from insects to mammals. Interestingly, three different mutations in human SPAST gene at the equivalent position are known to cause HSP. To explore this observation further, we genotyped more than 3,100 animals of various cattle breeds and found that the glutamine allele exclusively occurred in breeds upgraded with ABS. Furthermore, all confirmed BSD carriers were heterozygous, while all affected calves were homozygous for the glutamine allele consistent with recessive transmission of the underlying mutation and complete penetrance in the homozygous state. Subsequent analysis of recombinant Spastin in vitro showed that the R560Q substitution severely impaired the ATPase activity, demonstrating a causal relationship between the SPAST mutation and BSD

    Muscle damage response in female collegiate athletes following repeated sprint activity

    Get PDF
    Exercise induced muscle damage (EIMD) is a well-investigated area, however there is a paucity of data surrounding the damage response in females. The aim of this study was to examine the damage responses from a sport-specific bout of repeated sprints in female athletes. Eleven well-trained females (mean ± SD; age 22 ± 3 y, height 166.6 ± 5.7 cm, mass 62.7 ± 4.5 kg) in the luteal phase of the menstrual cycle completed a repeated sprint protocol designed to induce EIMD (15 × 30 m sprints). Creatine kinase (CK), countermovement jump height (CMJ), knee extensor maximum voluntary contraction force (MVIC), muscle soreness (DOMS), 30 m sprint time and limb girth were recorded pre, post, 24 h, 48 h and 72 h post exercise. CK was elevated at 24, 48 and 72 h (p < 0.05), peaking at 24 h (+418%) and returning towards baseline at 72 h. CMJ height was reduced immediately post, 24 and 48 h (p < 0.05). Sprint performance was also negatively affected immediately post, 24 h, 48 h and 72 h post exercise. Muscle soreness peaked at 48 h (p<0.01) and remained significantly elevated at 72 h post exercise (p<0.01). Limb girth and MVIC did not alter over time. The current study provides new information on the EIMD response in trained females following a sport specific bout of repeated sprints. Importantly, this damage response has the potential to negatively affect performance for several days post-exercise

    Responses of marine benthic microalgae to elevated CO<inf>2</inf>

    Get PDF
    Increasing anthropogenic CO2 emissions to the atmosphere are causing a rise in pCO2 concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO2 levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO2 gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO2 concentrations increased. CO2 enrichment caused significant increases in chlorophyll a concentrations and in diatom abundance although we did not detect any changes in cyanobacteria. SEM analysis revealed major shifts in diatom assemblage composition as CO2 levels increased. The responses of benthic microalgae to rising anthropogenic CO2 emissions are likely to have significant ecological ramifications for coastal systems. © 2011 Springer-Verlag

    Dimethylarginine dimethylaminohydrolase I enhances tumour growth and angiogenesis

    Get PDF
    Angiogenesis is a prerequisite for tumour progression and is highly regulated by growth factors and cytokines a number of which also stimulate the production of nitric oxide. Asymmetric dimethylarginine is an endogenous inhibitor of nitric oxide synthesis. Asymmetric dimethylarginine is metabolised by dimethylarginine dimethylaminohydrolase. To study the effect of dimethylarginine dimethylaminohydrolase on tumour growth and vascular development, the rat C6 glioma cell line was manipulated to overexpress the rat gene for dimethylarginine dimethylaminohydrolase I. Enhanced expression of dimethylarginine dimethylaminohydrolase I increased nitric oxide synthesis (as indicated by a two-fold increase in the production of cGMP), expression and secretion of vascular endothelial cell growth factor, and induced angiogenesis in vitro. Tumours derived from these cells grew more rapidly in vivo than cells with normal dimethylarginine dimethylaminohydrolase I expression. Immunohistochemical and magnetic resonance imaging measurements were consistent with increased tumour vascular development. Furthermore, dimethylarginine dimethylaminohydrolase activity was detected in a series of human tumours. This data demonstrates that dimethylarginine dimethylaminohydrolase plays a pivotal role in tumour growth and the development of the tumour vasculature by regulating the concentration of nitric oxide and altering vascular endothelial cell growth factor production

    Tracing the dynamic life story of a Bronze Age Female

    Get PDF
    YesAncient human mobility at the individual level is conventionally studied by the diverse application of suitable techniques (e.g. aDNA, radiogenic strontium isotopes, as well as oxygen and lead isotopes) to either hard and/or soft tissues. However, the limited preservation of coexisting hard and soft human tissues hampers the possibilities of investigating high-resolution diachronic mobility periods in the life of a single individual. Here, we present the results of a multidisciplinary study of an exceptionally well preserved circa 3.400-year old Danish Bronze Age female find, known as the Egtved Girl. We applied biomolecular, biochemical and geochemical analyses to reconstruct her mobility and diet. We demonstrate that she originated from a place outside present day Denmark (the island of Bornholm excluded), and that she travelled back and forth over large distances during the final months of her life, while consuming a terrestrial diet with intervals of reduced protein intake. We also provide evidence that all her garments were made of non-locally produced wool. Our study advocates the huge potential of combining biomolecular and biogeochemical provenance tracer analyses to hard and soft tissues of a single ancient individual for the reconstruction of high-resolution human mobility.The Danish National Research Foundation; The Carlsberg Foundation, L'Oreal Denmark-UNESCO; The ERC agreement no. 26944
    corecore