295 research outputs found
The Capaciousness of No: Affective Refusals as Literacy Practices
© 2020 The Authors. Reading Research Quarterly published by Wiley Periodicals, Inc. on behalf of International Literacy Association The authors considered the capacious feeling that emerges from saying no to literacy practices, and the affective potential of saying no as a literacy practice. The authors highlight the affective possibilities of saying no to normative understandings of literacy, thinking with a series of vignettes in which children, young people, and teachers refused literacy practices in different ways. The authors use the term capacious to signal possibilities that are as yet unthought: a sense of broadening and opening out through enacting no. The authors examined how attention to affect ruptures humanist logics that inform normative approaches to literacy. Through attention to nonconscious, noncognitive, and transindividual bodily forces and capacities, affect deprivileges the human as the sole agent in an interaction, thus disrupting measurements of who counts as a literate subject and what counts as a literacy event. No is an affective moment. It can signal a pushback, an absence, or a silence. As a theoretical and methodological way of thinking/feeling with literacy, affect proposes problems rather than solutions, countering solution-focused research in which the resistance is to be overcome, co-opted, or solved. Affect operates as a crack or a chink, a tiny ripple, a barely perceivable gesture, that can persist and, in doing so, hold open the possibility for alternative futures
Toughening mechanisms in elastomer-modified epoxies
The role Of matrix ductility on the toughenability and toughening mechanism of elastomer-modified, diglycidyl ether of bisphenol A (DGEBA)-based epoxies is investigated. Matrix ductility is varied by using epoxide resins of varying epoxide monomer molecular weights. These epoxide resins are cured using 4,4′ diaminodiphenyl sulphone (DDS) and, in some cases, modified with 10 vol% carboxyl-terminated copolymer of butadiene and acrylonitrile (CTBN). Fracture toughness values for the neat epoxies are found to be almost independent of the monomer molecular weight of the epoxide resin used. However, the fracture toughness of the elastomer-modified epoxies is found to be very dependent upon the epoxide monomer molecular weight. Tensile dilatometry indicates that the toughening mechanism, when present, is similar to the mechanism found for piperidine cured, elastomer-modified epoxies studied previously. Scanning electron microscopy and optical microscopy techniques corroborate this finding.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44695/1/10853_2005_Article_BF01174528.pd
High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland
Nucleotide polymorphism at 12 nuclear loci was studied in Scots pine populations across an environmental gradient in Scotland, to evaluate the impacts of demographic history and selection on genetic diversity. At eight loci, diversity patterns were compared between Scottish and continental European populations. At these loci, a similar level of diversity (θsil=~0.01) was found in Scottish vs mainland European populations, contrary to expectations for recent colonization, however, less rapid decay of linkage disequilibrium was observed in the former (ρ=0.0086±0.0009, ρ=0.0245±0.0022, respectively). Scottish populations also showed a deficit of rare nucleotide variants (multi-locus Tajima's D=0.316 vs D=−0.379) and differed significantly from mainland populations in allelic frequency and/or haplotype structure at several loci. Within Scotland, western populations showed slightly reduced nucleotide diversity (πtot=0.0068) compared with those from the south and east (0.0079 and 0.0083, respectively) and about three times higher recombination to diversity ratio (ρ/θ=0.71 vs 0.15 and 0.18, respectively). By comparison with results from coalescent simulations, the observed allelic frequency spectrum in the western populations was compatible with a relatively recent bottleneck (0.00175 × 4Ne generations) that reduced the population to about 2% of the present size. However, heterogeneity in the allelic frequency distribution among geographical regions in Scotland suggests that subsequent admixture of populations with different demographic histories may also have played a role
The observational clinical registry (cohort design) of the European Reference Network on Rare Adult Solid Cancers: The protocol for the rare head and neck cancers
Care for head and neck cancers is complex in particular for the rare ones. Knowledge is limited and histological heterogeneity adds complexity to the rarity. There is a wide consensus that to support clinical research on rare cancer, clinical registries should be developed within networks specializing in rare cancers. In the EU, a unique opportunity is provided by the European Reference Networks (ERN). The ERN EURACAN is dedicated to rare adults solid cancers, here we present the protocol of the EURACAN registry on rare head and neck cancers (ClinicalTrials.gov Identifier: NCT05483374). Study design Registry-based cohort study including only people with rare head and neck cancers. Objectives 1.To help describe the natural history of rare head and neck cancers; 2.To evaluate factors that influence prognosis; 3.To assess treatment effectiveness; 4.To measure indicators of quality of care. Methods Settings and participants It is an hospital based registry established in hospitals with expertise in head and neck cancers. Only adult patients with epithelial tumours of nasopharynx; nasal cavity and paranasal sinuses; salivary gland cancer in large and small salivary glands; and middle ear will be included in the registry. This registry won t select a sample of patients. Each patient in the facility who meets the above mentioned inclusion criteria will be followed prospectively and longitudinally with follow-up at cancer progression and / or cancer relapse or patient death. It is a secondary use of data which will be collected from the clinical records. The data collected for the registry will not entail further examinations or admissions to the facility and/or additional appointments to those normally provided for the patient follow-up. Variables Data will be collected on patient characteristics (eg. patient demographics, lifestyle, medical history, health status); exposure data (eg. disease, procedures, treatments of interest) and outcomes (e.g. survival, progression, progression-free survival, etc.). In addition, data on potential confounders (e.g. comorbidity; functional status etc.) will be also collected. Statistical methods The data analyses will include descriptive statistics showing patterns of patients and cancers variables and indicators describing the quality of care. Multivariable Cox s proportional hazards model and Hazard ratios (HR) for all-cause or cause specific mortality will be used to determine independent predictors of overall survival, recurrence etc. Variables to include in the multivariable regression model will be selected based on the results of univariable analysis. The role of confounding or effect modifiers will be evaluated using stratified analysis or sensitivity analysis. To assess treatment effectiveness, multivariable models with propensity score adjustment and progression-free survival will be performed. Adequate statistical (eg. marginal structural model) methods will be used if time-varying treatments/ confounders and confounding by indication (selective prescribing) will be present. Results The registry initiated recruiting in May 2022. The estimated completion date is December 2030 upon agreement on the achievement of all the registry objectives. As of October 2022, the registry is recruiting. There will be a risk of limited representativeness due to the hospital-based nature of the registry and to the fact that hospital contributing to the registry are expert centres for these rare cancers. Clinical Follow-up could also be an issue but active search of the life status of the patients will be guaranteed
Electron transfer kinetics on natural crystals of MoS2 and graphite
Here, we evaluate the electrochemical performance of sparsely studied natural crystals of molybdenite and graphite, which have increasingly been used for fabrication of next generation monolayer molybdenum disulphide and graphene energy storage devices. Heterogeneous electron transfer kinetics of several redox mediators, including Fe(CN)63−/4−, Ru(NH3)63+/2+ and IrCl62−/3− are determined using voltammetry in a micro-droplet cell. The kinetics on both materials are studied as a function of surface defectiveness, surface ageing, applied potential and illumination. We find that the basal planes of both natural MoS2 and graphite show significant electroactivity, but a large decrease in electron transfer kinetics is observed on atmosphere-aged surfaces in comparison to in situ freshly cleaved surfaces of both materials. This is attributed to surface oxidation and adsorption of airborne contaminants at the surface exposed to an ambient environment. In contrast to semimetallic graphite, the electrode kinetics on semiconducting MoS2 are strongly dependent on the surface illumination and applied potential. Furthermore, while visibly present defects/cracks do not significantly affect the response of graphite, the kinetics on MoS2 systematically accelerate with small increase in disorder. These findings have direct implications for use of MoS2 and graphene/graphite as electrode materials in electrochemistry-related applications
- …